Das Ziel dieses Projektes ist es, die Funktion von Bodenmikroorganismen für die Stabilisierung und die Mineralisierung von organischen Substanzen an der Grenzfläche zwischen Boden und Streustoffen zu ermitteln. Mit diesem Arbeitsschwerpunkt soll ein Beitrag zum Thema Nummer 1 'Stabilisierung durch strukturchemisch bedingte Eigenschaften (Rekalzitranz)' des DFG-Programmes geleistet werden. Mikrokosmosexperimente im Labor sollen den Zusammenhang zwischen der Sukzession von mikrobiellen Lebensgemeinschaften, der Substratverfügbarkeit an der Grenzfläche zwischen Streu und Boden und der Produktion von Bodenenzymen, die für den Abbau von organischen Verbindungen verantwortlich sind, klären. Ein besonderer Schwerpunkt soll darauf gelegt werden, den Zusammenhang zwischen Lokalisation und Funktion der Bodenorganismen in ihrem Habitat zu erfassen. Die Übertragbarkeit der in den Laborexperimenten gewonnen Daten auf die Situation im Freiland soll durch die Untersuchung der kleinräumigen Variabilität bodenmikrobiologischer Prozesse im Freiland (jeweils zwei ackerbauliche und zwei forstlich genutzte Standorte) überprüft werden. Ein ausgewählter Waldstandort soll zudem in allen Kompartimenten (Horizonte, Grenzschichten, Aggregatgrößenfraktionen) genauer betrachtet werden, um Aussagen über die quantitative Relevanz der einzelnen Vorgänge abzuleiten.
For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.
De nombreuses enzymes interviennent dans la mineralisation de la matiere organique. L'activite enzymatique provient soit d'enzymes stabilisees, soit d'enzymes nouvellement synthetisees lors du developpement microbien. L'activite enzymatique est un des criteres biologiques importants pouvant exprimer l'etat de vie d'un sol. Il est donc necessaire de poursuivre nos recherches dans ce domaine afin de pouvoir evaluer l'effet des polluants, des differentes fumures ou d'autres substances etrangeres sur l'activite des sols. (FRA)
1. Untersuchung des Einflusses des Ausgangsgesteins und der Bodenart, des Humusgehaltes, der Witterungsverhaeltnisse sowie der mineralischen N-Duengung auf die Mineralisation der organischen Substanz des Bodens. 2. Pruefung der Verlagerung und des Austrags von Nitrat-Stickstoff. 3. Untersuchung der Zusammenhaenge zwischen Stickstoffangebot im Boden und der N-Aufnahme durch die Rebe. - Die o.g. Zielsetzungen sollen in einem 3-faktoriellen Versuch mit folgenden Faktoren geprueft werden: Faktor A: Bodenausgangsgesteine: 1. Buntsandstein, 2. Muschelkalk, 3. Gipskeuper. Faktor B: 1. ca. 1 v.H. Humus, 2. ca. 2 v.H. Humus. Faktor C: 1. 0 kg N/ha, 2. 120 kg N/ha. - Die Versuchskombinationen werden in 6 Wiederholungen angelegt. Jeweils 3 WH werden bereits ab dem Anlagejahr mit jeweils einer Pfropfrebe bepflanzt. Die Bepflanzung der uebrigen 3 WH erfolgt nach 3-jaehriger Versuchszeit. Der Rauminhalt der Container betraegt 0,6 m3.
Vererdung kaum oder schlecht zu entwaessernder Schlaemme, die mit Hefepilzen belastet sind, mit Hilfe geeigneter hoeherer Pflanzen in besonders aufgebauten Beeten und mit besonders langer Aufnahmezeit; sehr preiswert; keimtoetend; Patent erteilt.
a) Pflanzeninhaltsstoffe wie Zellulose, Lignin und Protein sind Ausgangsstoffe der organischen Bodensubstanz. Die Kenntnis ihrer Umwandlung zu Huminstoffen ist eine wichtige Grundlage zur Erhaltung der Bodenfruchtbarkeit. Die Untersuchungen werden mit Pflanzenrueckstaenden, aber auch mit einzelnen Bestandteilen von Pflanzen oder Mikroorganismen durchgefuehrt. b) Synthese oder Gewinnung von Inhaltsstoffen und Pflanzen oder Mikroorganismen markiert durch die Isotope 14C, 15N oder 35S. Verfolgung des Abbaues und der Umwandlung im Boden oder durch bestimmte Mikroorganismen. Untersuchung der neugebildeten Huminstoffe hinsichtlich ihrer Isotopen-Verteilung und der weiteren Transformation und Mineralisation der markierten Bestandteile. c) Es handelt sich hierbei um langfristige Untersuchungen, die zum Teil in Zusammenarbeit mit in- und auslaendischen Forschungseinrichtungen durchgefuehrt werden.
Silizium (Si) spielt eine wichtige Rolle im globalen Kohlenstoffkreislauf. Die Si-Verfügbarkeit in Ökosystemen ist dabei sehr unterschiedlich, abhängig von Ökosystemtyp, Ausgangsgestein, Vegetation und weiteren Faktoren. Aktuelle Forschung hat gezeigt, dass die Si-Verfügbarkeit entscheidend für Nährstoffgehalt und Nährstoffstöchiometrie von pflanzlicher Streu ist; besonders deutlich ist dieser Zusammenhang in Gräser-dominierten Systemen. Bedeutend in dem Zusammenhang ist eine gesteigerte Abbaurate von organischem Material bei gesteigerter Si-Verfügbarkeit. Pflanzenstreu mit geringen Nährstoffgehalten wird bekanntermaßen langsamer abgebaut als nährstoffreiche Streu. Allerdings konnte kürzlich gezeigt werden, dass nährstoffarme Streu mit hohen Si-Gehalten schneller abgebaut wird als nährstoffreiche Streu mit wenig Si. Dabei wurde gleichzeitig durch die Erhöhung des Si-Gehaltes der Streu die Biomasse der abbauenden Pilze stark reduziert. Dies beweist die Bedeutung von Si für den Kohlenstoffkreislauf und die mikrobielle Abbaugemeinschaft in von Gräsern dominierten Ökosystemen. Niedermore, als wichtige Kohlenstoffspeicher und bedeutende Treibhausgas-emittenden, sind solche von Gräsern dominierten Ökosysteme mit einem potentiell hohen Einfluss von Si auf den Kohlenstoffkreislauf. Eine Vorabstudie, welche den Einfluss von Si auf den Kohlenstoffkreislauf in einem Niedermoor untersuchte, zeigte eine verstärkte Respiration mit einer Vordopplung der Methangehalte im Torfkörper auf Si gedüngten Flächen. Allerdings wurde gleichzeitig zu den erhöhten Respirationsraten auch ein Anstieg der Phosphorgehalte (P) in der Bodenlösung gemessen. Eine Erhöhung des verfügbaren P führt bekanntermaßen ebenfalls zu einer Erhöhung der Respiration. Das Ziel des beantragten Projektes ist die direkten Effekte von Si auf den Kohlenstoffkreislauf von den indirekten Effekten (durch die Si bedingte P-Mobilisierung) zu trennen und eine Quantifizierung beider Prozesse vorzunehmen. Unsere Hypothesen sind (i) eine höhere Si Verfügbarkeit führt zu einer Steigerung der Respiration organischer Substanz (Torf), durch (ii) direkte Si-Effekte und indirekte Si-Effekte durch eine Steigerung der P-Verfügbarkeit, (iii) die Steigerung der Respiration durch Si wird vorrangig durch Bakterien als durch Pilze erzielt und (iv) eine Steigerung der Si Verfügbarkeit führt zu einer Steigerung von P und N Verfügbarkeit, Umsatz und Aufnahme durch Pflanzen und damit zu labilerer Streu. Die Mechanismen zu verstehen auf welche Weise Si den Kohlenstoffkreislauf in Niedermooren beeinflusst ist ein wichtiger Teil eines verbesserten Verständnisses des terrestrischen Kohlenstoffkreislaufs.
In diesem Vorhaben werden die Einsatzmoeglichkeiten von in der Wassertechnologie gaengigen Oxidationsverfahren, speziell der Ozonung, im Bereich der Reinigung von Feststoffen untersucht. Dabei standen bisher in erster Linie organisch kontaminierte Boeden von ehemaligen Gaswerksstandorten im Mittelpunkt. Es konnte gezeigt werden, dass sowohl bei einer in-situ- als auch einer ex-situ-Behandlung eine ueber 95prozentige Elimination der Schadstoffklasse der PAK moeglich ist. Der Ozonbedarf betraegt dabei im Falle einer in-situ -Anwendung etwa 5 g Ozon je g organisch gebundenem Kohlenstoff. Durch die Einstellung geeigneter Reaktionsbedingungen, was jedoch nur ex-situ moeglich ist, laesst sich dieser Verbrauch auf 3,5 g/g reduzieren. In einer Parallelreaktion werden ferner die natuerlichen Huminstoffe und auch sulfidische Mineralphasen des Bodens umgesetzt. Dabei kommt es auf gering gepufferten Boeden zu einer Versauerung, der durch eine Kalkung entgegengewirkt werden kann. Von den organischen Oxidationsprodukten wurden nahzu 100 Verbindungen identifiziert. Diese sollen in einer nachfolgenden biologischen Behandlung vollstaendig mineralisiert und der Boden so fuer einen Wiedereinbau konditioniert werden.
To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.
Es ist die Hypothese aufgestellt worden, dass neben nicht abgebauten Pflanzenresten die organische Substanz des Bodens grob aus zwei Kompartimenten besteht. Bestimmt durch den Ton- und Feinschluffanteil entwickelte sich ein inerter C-Pool während der Genese von Böden. Dieser an die mineralischen Feinanteile gebundene Kohlenstoff nimmt nur über einen langen Zeitraum am Kohlenstoffumsatz von Böden teil. In Abhängigkeit von der landwirtschaftlichen Praxis entwickelt sich während des durch die metabolische Aktivität von Bodentieren und Mikroorganismen verursachten Abbaus von Pflanzenresten und organischen Düngern ein zweiter, labiler C-Pool. Dieser ist im wesentlich verantwortlich für die Nährstoffflüsse in Böden. Das Ziel des geplanten Forschungsprojektes ist es, in Laborexperimenten die Verteilung von frisch zugeführten 14C aus markiertem Weizenstroh zwischen inertem und labilem C-Pool über den Zeitraum eines Jahres zu verfolgen. Zusätzlich wird die Mineralisierung des Pflanzenmaterials zu 14CO2, die Bildung wasserlöslicher 14C-Metabolite und die anabolische Verwertung des markierten Kohlenstoffs durch die mikrobielle Biomasse des Bodens verfolgt. Nach einer physikalischen Fraktionierung der mineralisch-organischen Bodensubstanz in einzelne Größenfraktionen soll deren Gehalt an 14C/12C organischer Substanz über die Zeit bestimmt werden. In einem Inkubationsexperiment werden die isolierten Größenfraktionen mit der autochthonen Bodenflora beimpft werden, und die dabei durch die Aktivität der Mikroorganismen freigesetzten 14CO2 Mengen sind ein Indikator für die Stabilität der organischen Substanz in den einzelnen Fraktionen. Für diese Untersuchungen werden Proben eines landwirtschaftlichen Bodens ausgesucht, der für viele Jahrzehnte verschiedener Düngungspraxis (null, mineralisch, organisch) unterlag. Durch dieses Forschungsprojekt werden Informationen über die kausalen Zusammenhänge von Bodenprozessen bei der Bildung und Speicherung der organischen Substanz im Boden erwartet.
| Origin | Count |
|---|---|
| Bund | 546 |
| Land | 15 |
| Type | Count |
|---|---|
| Förderprogramm | 529 |
| unbekannt | 17 |
| License | Count |
|---|---|
| geschlossen | 17 |
| offen | 529 |
| Language | Count |
|---|---|
| Deutsch | 483 |
| Englisch | 107 |
| Resource type | Count |
|---|---|
| Archiv | 16 |
| Bild | 17 |
| Keine | 421 |
| Webseite | 125 |
| Topic | Count |
|---|---|
| Boden | 494 |
| Lebewesen und Lebensräume | 504 |
| Luft | 322 |
| Mensch und Umwelt | 546 |
| Wasser | 381 |
| Weitere | 546 |