s/organische-bodensubstanz/Organische Bodensubstanz/gi
Mineralische Pflanzenstärkungsmittel (Agrosol) sind für die Biologische Landwirtschaft zugelassen und werden in diesem Bereich beworben. Das primäre Ziel dieser Forschungsarbeit soll sein, die Wirtschaftlichkeit des Einsatzes solcher Mittel gerade in der Biologischen Landwirtschaft zu überprüfen. Gerade in einer Zeit, wo Dauergrünlandbetriebe versuchen müssen, alle möglichen externen Kosten so gering wie möglich zu halten, ist eine kritische Überprüfung notwendig. Am Bio Lehr- und Forschungsbetrieb des LFZ Raumberg-Gumpenstein werden Exaktversuchsparzellen auf einer 3-schnittigen Dauerwiese angelegt. Die Fläche befindet sich auf 740 m und stellt von der Ertragslage einen guten durchschnittlichen Grünlandbestand dar. Die Bewirtschaftung der Parzellen erfolgt mit 2 Düngungsniveaus. Einmal mit 80 und einmal mit 120 kg N je ha und Jahr, wobei immer eine Variante mit keinem zusätzlichen Mittel behandelt wird und die andere mit einem mineralischen Pflanzenstärkungsmittel (Agrosol). Das Pflanzenstärkungsmittel wird 1-mal vor dem 1. Schnitt, 2-mal nach dem 1. Schnitt und 1-mal nach dem 2. Schnitt mit 3 kg/ha ausgebracht. Folgende Punkte sollen dabei überprüft werden: 1. Unterscheiden sich die Pflanzenbestände zwischen den Varianten nach der Projektlaufzeit. Die Zusammensetzung einer Schnittwiese gibt Auskunft über die Stabilität bzw. Labilität gegenüber der Bewirtschaftung und der Umwelteinflüsse. Jede Form der Bewirtschaftung hat einen großen Einfluss auf die Entwicklung des Pflanzenbestandes, weshalb die Beobachtung beim Einsatz neuer Produkte sehr wichtig ist. 2. Hat der Einsatz von mineralischen Pflanzenstärkungsmitteln einen Einfluss auf den Humusgehalt im Boden. Anhand von begleitenden Bodenanalysen soll die Situation der wichtigsten Bodenparameter überprüft werden, damit so mögliche kurzfristige Veränderungen dokumentiert werden können. 3. Kommt es zu einer Steigerung der Mengen- und Qualitätserträge bei den behandelten Varianten. Es gilt zu ermitteln, wie stark die Ertragsdifferenz zwischen den Parzellen ohne und mit Behandlung des mineralischen Pflanzenstärkungsmittels ist. Darüber hinaus werden auch Unterschiede bei den Inhaltsstoffen untersucht. 4. Ist der Einsatz solcher Mittel für den Dauergrünlandbetrieb ökonomisch sinnvoll. Da Zukaufmittel immer mit Kosten verbunden sind, ist eine ökonomische Bewertung wichtig. Gerade ein Dauergrünlandbetrieb muss bei Zukaufmittel sehr gut überlegen, da z.B. bei Betrachtung der aktuellen Milchpreise jeglicher zusätzliche Aufwand beachtet werden muss.
Quantitative Kenntnisse über die Einbauraten von Streukohlenstoff in unterschiedlich stabile Fraktionen der organischen Bodensubstanz (SOM) sind eine wichtige Voraussetzung für das Verständnis der Regulation der Stabilisierung organischer Substanz in Böden. Die Bestimmung der Bildungs- und Umsatzraten unterschiedlich stabiler Fraktionen der organischen Bodensubstanz im Zuge des Streuabbaus setzt voraus, dass der Ursprung des organischen Kohlenstoffs in den Fraktionen zurückverfolgt werden kann. Ziel dieses Projektes ist es, die langfristigen Umsatz- und Stabilisierungsraten von maisbürtigem Kohlenstoff in den Böden der Maismonokulturflächen (seit 1961) des Dauerversuches 'ewiger Roggen' zu erfassen. Die Analyse erfolgt anhand der natürlichen 13C-Verteilung in unterschiedlichen Fraktionen der organischen Bodensubstanz. In Inkubationsversuchen wird die Bedeutung der unterschiedlich alten SOM-Vorräte (maisbürtig bzw. vor 1961 gebildet) als Substrat für die DOC-Produktion und die Bodenrespiration quantifiziert. Weiterhin soll der Einfluss mineralischer Nährstoffzufuhr auf die Umsatz- und Stabilisierungsfragen von Maisstreu erfasst werden. Die Ergebnisse werden zur Modellierung der Dynamik der C-Umsetzungsprozesse mit dem Rothamsted C-Modell eingesetzt.
Die Verwendung von Stabilisotopenverhältnissen zur Aufdeckung von Prozessen in der Umwelt erfordert ein tiefreichendes Verständnis, das für einige Elemente wie Kohlenstoff (C) und Stickstoff (N) im Boden vorhanden ist. Unsere vorigen Projekte zeigten grundlegende Unterschiede in der Reaktion der Wasserstoff (H)-Isotopenverhältnisse auf Umwelteinflüsse im Vergleich zu C und N auf. Das Sauerstoff (O)-Isotopensystem im Boden wurde bisher wenig beachtet. Es ähnelt dem von H hinsichtlich eines austauschbaren und eines nicht austauschbaren Anteils, wobei nur Letzterer ein aussagekräftiges Signal liefert. Die C- und N-Isotopensysteme sind dem von O ähnlich, da diese Elemente an biochemischen Reaktionen beteiligt sind, die durch extrazelluläre Enzyme katalysiert werden und mit einer Isotopenfraktionierung verbunden sind. Da in der spärlichen Literatur ein Zusammenhang zwischen den O-Isotopenverhältnissen in der organischen Substanz (OS) und dem Klima angenommen wird, könnte ein verbessertes Verständnis des O-Isotopensystems ein neues Instrument darstellen, mit dem sich subtile Auswirkungen des Klimawandels in Ökosystemen aufspüren lassen, die sonst übersehen werden. Unser übergeordnetes Ziel ist es, die Bedeutung der ?18O-Werte von nicht austauschbarem O in der organischen Bodensubstanz (OBS) in einem ökologischen Kontext aufzudecken. Wir planen, (i) den Anteil von austauschbarem O in der Pflanzenstreu und in der OBS zu quantifizieren, (ii) die Kinetik des O-Einbaus aus dem Umgebungswasser in die OS durch mikrobielle und extrazelluläre Enzymaktivität zu bestimmen, (iii) zu testen, ob der Abbau von OS mit einer O-Isotopenfraktionierung verbunden ist, und wenn ja, die scheinbare Netto-Isotopenfraktionierung zu quantifizieren, (iv) die Beziehung zwischen den ?18O-Werten des Niederschlags und dem nicht austauschbarem O-Anteil in der organischen Auflage im Wald zu untersuchen und (v) herauszufinden, ob die ?18O-Werte des nicht austauschbaren O in der OBS mit denen ausgewählter Biomarker korrelieren. Als Voraussetzung (WP1) muss der Einfluss von anorganischem O eliminiert werden. Wir werden (a) testen, ob eine Demineralisierungsmethode, die für H-Isotope etabliert wurde, auf O-Isotope übertragbar ist, und (b) eine neue Methode entwickeln, die auf der Extraktion von Oxyanionen und der Zerstörung der OS durch Vermuffelung basiert. Wir werden die zuverlässigste Methode auswählen und Experimente durchführen, um den Einbau von O und H aus dem Umgebungswasser und die damit verbundene Isotopenfraktionierung quantifizieren zu können (WP2). Dies wird durch eine Feldstudie ergänzt, in der die Anteile von austauschbarem O und H in der OS quantifiziert, die mittelfristigen Auswirkungen des O- und H-Einbaus aus dem Umgebungswasser sowie der Isotopenfraktionierung in den Systemen C, N, O und H und das Potenzial des O-Isotopensystems zusammen mit dem von H und/oder anderen Elementen, klimabedingte Prozessänderungen anzuzeigen, untersucht werden (WP3).
Der menschliche Einfluss durch Landnutzung hat global zu starken Veränderungen in der Bodenentwicklung geführt und verursachte Verluste von Kohlenstoff aus terrestrischen Ökosystemen. Trotz relativ langsamer netto-Änderungen ist organische Bodensubstanz eine der wichtigsten Speichergrößen für Kohlenstoff. Der heutige Stand der Forschung zeigt dass die Größe der Quellen- oder Senkenfunktion von Böden für atmosphärisches Kohlenstoffdioxid von Bodeneigenschaften abhängt, die wiederum das Ergebnis pedogenetischer Prozesse sind. Bisher wurden allerdings Landnutzung und Kohlenstoffspeicherung kaum hinsichtlich ihrer Verbindung mit pedogenetischen Prozessen erforscht. Ein Grund ist sicherlich dass es kaum Referenzflächen gibt, die sicher als natürlich bezeichnet werden können aber trotzdem vergleichbare Bedingungen zu genutzten Flächen aufweisen. In der Region Cusco in den peruanischen Anden haben wir solche natürlichen Flächen identifizieren können. Sie liegen an abgelegenen Berghängen und sind nur mit Bergsteigerausrüstung zu erreichen, sind aber direkt mit Flächen benachbart die seit Jahrtausenden durch extensive Weidewirtschaft gekennzeichnet sind. Unsere Hypothesen lauten (a) Landnutzung und assoziierte Veränderungen in der Vegetation beeinflussten die Bodenentwicklung so stark dass sich in natürlichen und genutzten Böden unterschiedliche Klassifikationseinheiten entwickelten und (b) Landnutzung und veränderte Bodenentwicklung haben die relative Bedeutung von Mechanismen der Stabilisierung organischer Bodensubstanz verschoben. Um diese Hypothesen zu untersuchen werden Bodenklassifizierung und Indikatoren der Profilentwicklung genutzt und mit der Verteilung der organischen Bodensubstanz in Fraktionen unterschiedlicher Stabilisierungsmechanismen in Verbindung gebracht. Die Verbindung von Aspekten der Bodengenese mit der Stabilisierung der organischen Bodensubstanz wird das Verständnis des menschlichen Einfluss auf Kohlenstofffestlegung im Boden verbessern und kann somit helfen Strategien zu entwickeln die den Landnutzungsinduzierten Verlust von Kohlenstoff in die Atmosphäre verringern.
For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.
It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.
Schwermetalle (z. B. Cadmium) werden in Böden in unterschiedlichem Maß gebunden. Die Bindung erfolgt durch Adsorption an Austauschern (Tonminerale, Oxide) oder durch Bindung an organische Bodenbestandteile (Humus) in Abhängigkeit vom pH-Wert. Der pH-Wert entspricht bei landwirtschaftlicher Nutzung einem bodenspezifischen pH-Optimum, bei Forstnutzung dem derzeitigen mittleren standortspezifischen Versauerungsgrad unter Wald. Aufgrund der Bodeneigenschaften Tongehalt, Humusgehalt, pH-Wert und Eisenoxidgehalt kann die relative Bindungsstärke der Böden für die einzelnen Schwermetalle beurteilt werden. Die Karte zeigt die Relative Bindungsstärke des Oberbodens (FSMo) exemplarisch für Cadmium (aufgrund seiner für Schwermetalle relativ repräsentativen Eigenschaften) und basiert auf der Bodenkarte von Niedersachsen 1 : 50 000.
In der organischen Substanz (Humus) von Böden wird Kohlenstoff gespeichert. Zur Darstellung der Humusmengen bzw. -vorräten in Böden dient die vorliegende Karte. Die Einheit ist Tonnen pro Hektar (t/ha). Die organischen Kohlenstoffvorräte (Corg-Vorräte) ergeben sich aus dem Produkt von Humusgehalten in Masse-% - Boden, der Trockenrohdichte des Bodens und der Betrachtungstiefe in cm (hier 100cm). Bei mineralischen Böden unter Wald erfolgt die Darstellung unter Einbeziehung der Humusauflage. Grundlage sind die Geometrien und Idealprofile (Leit- und Begleitböden) der Bodenübersichtskarte 1:250.000 von Schleswig-Holsteinl. Die Nutzungsinformationen stammen aus dem Datensatz Corine-Landcover (CLC 5 2018 des Bundesamtes für Kartographie und Geodäsie (BKG)) und wurden für diese Karte zu 5 Klassen aggregiert. Die Attributtabelle der Karte enthält zusätzlich die Information über absolute organische Kohlenstoffvorräte der Einzelflächen. Es werden Flächen bis zu einer Mindestgröße von 1 ha dargestellt. In Siedlungsgebieten und auf stark anthropogen beeinflussten Flächen weisen die Daten höhere Unsicherheiten auf, weshalb die Kartendarstellung in diesen Bereichen ausgegraut wurde. In der Attributtabelle der Flächendaten sind die entsprechenden Angaben enthalten.
In der organischen Substanz (Humus) von Böden wird Kohlenstoff gespeichert. Zur Darstellung der Humusmengen bzw. -vorräten in Böden dient die vorliegende Karte. Die Einheit ist Tonnen pro Hektar (t/ha). Die organischen Kohlenstoffvorräte (Corg-Vorräte) ergeben sich aus dem Produkt von Humusgehalten in Masse-% - Boden, der Trockenrohdichte des Bodens und der Betrachtungstiefe in cm (hier 200cm). Bei mineralischen Böden unter Wald erfolgt die Darstellung unter Einbeziehung der Humusauflage. Grundlage sind die Geometrien und Idealprofile (Leit- und Begleitböden) der Bodenübersichtskarte 1:250.000 von Schleswig-Holsteinl. Die Nutzungsinformationen stammen aus dem Datensatz Corine-Landcover (CLC 5 2018 des Bundesamtes für Kartographie und Geodäsie (BKG)) und wurden für diese Karte zu 5 Klassen aggregiert. Die Attributtabelle der Karte enthält zusätzlich die Information über absolute organische Kohlenstoffvorräte der Einzelflächen. Es werden Flächen bis zu einer Mindestgröße von 1 ha dargestellt. In Siedlungsgebieten und auf stark anthropogen beeinflussten Flächen weisen die Daten höhere Unsicherheiten auf, weshalb die Kartendarstellung in diesen Bereichen ausgegraut wurde. In der Attributtabelle der Flächendaten sind die entsprechenden Angaben enthalten.
In der organischen Substanz (Humus) von Böden wird Kohlenstoff gespeichert. Zur Darstellung der Humusmengen bzw. -vorräten in Böden dient die vorliegende Karte. Die Einheit ist Tonnen pro Hektar (t/ha). Die organischen Kohlenstoffvorräte (Corg-Vorräte) ergeben sich aus dem Produkt von Humusgehalten in Masse-% - Boden, der Trockenrohdichte des Bodens und der Betrachtungstiefe in cm (hier 30cm). Bei mineralischen Böden unter Wald erfolgt die Darstellung unter Einbeziehung der Humusauflage. Grundlage sind die Geometrien und Idealprofile (Leit- und Begleitböden) der Bodenübersichtskarte 1:250.000 von Schleswig-Holsteinl. Die Nutzungsinformationen stammen aus dem Datensatz Corine-Landcover (CLC 5 2018 des Bundesamtes für Kartographie und Geodäsie (BKG)) und wurden für diese Karte zu 5 Klassen aggregiert. Die Attributtabelle der Karte enthält zusätzlich die Information über absolute organische Kohlenstoffvorräte der Einzelflächen. Es werden Flächen bis zu einer Mindestgröße von 1 ha dargestellt. In Siedlungsgebieten und auf stark anthropogen beeinflussten Flächen weisen die Daten höhere Unsicherheiten auf, weshalb die Kartendarstellung in diesen Bereichen ausgegraut wurde. In der Attributtabelle der Flächendaten sind die entsprechenden Angaben enthalten.
| Origin | Count |
|---|---|
| Bund | 788 |
| Land | 76 |
| Wissenschaft | 11 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 2 |
| Chemische Verbindung | 2 |
| Daten und Messstellen | 11 |
| Ereignis | 4 |
| Förderprogramm | 720 |
| Gesetzestext | 2 |
| Hochwertiger Datensatz | 1 |
| Text | 56 |
| Umweltprüfung | 7 |
| unbekannt | 53 |
| License | Count |
|---|---|
| geschlossen | 97 |
| offen | 755 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 724 |
| Englisch | 250 |
| Resource type | Count |
|---|---|
| Archiv | 15 |
| Bild | 4 |
| Datei | 11 |
| Dokument | 49 |
| Keine | 600 |
| Unbekannt | 3 |
| Webdienst | 17 |
| Webseite | 217 |
| Topic | Count |
|---|---|
| Boden | 806 |
| Lebewesen und Lebensräume | 809 |
| Luft | 519 |
| Mensch und Umwelt | 856 |
| Wasser | 516 |
| Weitere | 799 |