Das Projekt "Reshaping Science-Policy Interactions in Climate Policy: International Stock-Taking and Lessons for Austria" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Forst- und Umweltpolitik durchgeführt. ReSciPI strives to provide policy-relevant insights on how climate science and climate policy can be integrated in a more productive way. The project builds on an innovative theoretical approach that clearly goes beyond mere 'knowledge transfer and conceptualizes science-policy interactions in an iterative and reflexive manner ('knowledge brokerage, KB). Specifically, ReSciPI aims to: (i) map and analyze the institutions, actors and processes of science-policy interaction in Austrian climate policy in order to identify the strengths, weaknesses, potentials and obstacles for an effective KB; (ii) provide an overview of different forms of institutionalization of climate KB in selected industrialized countries (stocktaking survey); (iii) get a profound understanding of how climate science and climate policy are effectively integrated in innovative KB models (in-depth cases); (iv) to provide options on how to improve institutions and processes of KB by synthesizing the empirical in-sights gained and critically reflecting with relevant stakeholders, preferably in the ACRP Forum, on how a productive climate science-policy interface in Austria and beyond could look like.
Das Projekt "Climate change - terrestrial adaption and mitigation in Europe (CCTAME)" wird vom Umweltbundesamt gefördert und von IIASA - International Institute for Applied Systems Analysis durchgeführt. Objective: The project will assess the impacts of agricultural, climate, energy, forestry and other associated land-use policies, considering the resulting feed-backs on the climate system. Geographically explicit biophysical models together with an integrated cluster of economic land-use models will be coupled with regional climate models to assess and identify mitigation and adaptation strategies in European agriculture and forestry. The role of distribution and pressures from socio-economic drivers will be assessed in a geographically nested fashion. Crop/trees growth models operating on the plot level as well as on continental scales will quantify a rich set of mitigation and adaptation strategies focusing on climatic extreme events. The robustness of response strategies to extreme events will further be assessed with risk and uncertainty augmented farm/forest enterprise models. Bioenergy sources and pathways will be assessed with grid level models in combination with economic energy-land-use models. The results from the integrated CC-TAME model cluster will be used to provide: quantitative assessments in terms of cost-efficiency and environmental effectiveness of individual land-use practices; competitive LULUCF mitigation potentials taking into account ancillary benefits, trade-offs and welfare impacts, and policy implications in terms of instrument design and international negotiations. The proposed structure of the integrated CC-TAME model cluster allows us, to provide an evaluation of policy options at a great level of detail for EU25(27) in a post-Kyoto regime, as well as to offer perspectives on global longer-term policy strategies in accordance with the principles and objectives of the UNFCCCC. Close interactions with policymakers and stakeholders will ensure the policy relevance of CC-TAME results.