Das Projekt "B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.
Das Projekt "Biomass fluidised bed gasification with in situ hot gas cleaning (AER-GAS II)" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Objective: The project aim is a low-cost gasification process with integrated in-situ gas cleaning for the conversion of biomass into a product gas with high hydrogen concentration, high heating value and low tar/alkali/sulphur concentration in one process step for s ubsequent power production. The proposed process uses in-situ CO2 capture (AER, Absorption Enhanced Reforming). It is more efficient than conventional gasification due to (i) the in-situ integration of the reaction heat of CO2 absorption and water-gas shif t reaction heat (both exothermic) into the gasification and (ii) the internal reforming of primary and secondary tars, which cuts off the formation of higher tars. Thus, the chemical energy of tars remains in the product gas. The product gas after dust rem oval can directly be used in a gas engine for electricity generation. Due to the low operation temperature (up to 700 C) and due to CaO-containing bed materials, the proposed process allows the use of problematic feedstocks such as biomass with high minera l and high moisture content, e.g. straw, sewage sludge, etc., leading to an increased market potential for biomass gasification processes. Screening/development of absorbent materials with high attrition stability and tar cracking properties will be carrie d out. Analysis of tar formation/decomposition process will be studied in a lab-scale fixed bed reactor and a 100 kWth circulating fluidised bed reactor (continuous mode). With the acquired data, the 8 MWth biomass plant at Guessing, Austria, will be opera ted with absorbent bed material in order to prove the feasibility of a scale-up and to assess the economical aspects of the process. In order to point out the market potential, the cost reduction of the AER technology will be quantified in comparison with the conventional gasification power plant. Expected results will be: (i) a broad knowledge of the proposed process and (ii) a low-cost technology for biomass gasification with subsequent power production.
Das Projekt "Energy and Water Fluxes at the Soil Atmosphere Interface of Water Repellent soils" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Ökologie, Fachgebiet Bodenkunde durchgeführt. Unsere zentrale Arbeitshypothese ist, dass durch die globale Erwärmung nicht nur der Trend zur Hydrophobie von Böden zunehmen wird, sondern dass auch der Energieaustausch an der Grenzschicht Bode/Atmosphäre verändert wird und sich damit eine Rückwirkung auf das globale Klima ergibt. Um unsere Arbeitshypothese zu prüfen, beabsichtigen wir, alle Größen der Energie- und Wasserbilanz zwischen Boden und Atmosphäre für einen stark von Hydrophobie geprägten Boden zu bestimmen.
Das Projekt "Quantifying and modelling pathways of soil organic matter as affected by abiotic factors, microbial dynamics, and transport processes (QUASOM)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Soils play a critical role in the coupled carbon-cycle climate system. However, our scientific understanding of the role of soil biological-physicochemical interactions and of vertical transport for biogeochemical cycles is still limited. Moreover the representation of soil processes in current models operating at global scale is crude compared to vegetation processes like photosynthesis. Hence, the general aim of this project is to improve our understanding of the key interactions between the biological and the physicochemical soil systems that are often not explicitly considered in current experimental and modeling approaches and are likely to influence the biogeochemical cycles for a large part of the terrestrial biosphere and thus have the potential to significantly impact the Earth System as a whole. This will be achieved through an approach that integrates new soil mesocosm experiments, field data from ongoing European projects and soil process modeling. In mesocosm tracer experiments the fate of fresh and autochthonous soil organic matter will be followed under varying temperature and moisture regimes in bacterial and fungal dominated soils and the hypothesis tested that transfer coefficients between soil organic matter pools are constant as implemented in current soil organic matter models. A new soil model structure will be developed that may explicitly account for the role of microbes and transport for soil organic matter dynamics. This will be supported by multiple-constraint model identification techniques, which allows testing and achieving model consistency with several observation types. An incorporation of such new soil module into a global dynamic vegetation model (DGVM) is foreseen.
Das Projekt "A 1: Potential and constraints of participatory research approaches for sustainable development in mountainous regions of Southeast Asia - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrar- und Sozialökonomie in den Tropen und Subtropen durchgeführt. Research in this project area is directed at the process of cooperation between researchers, farmers and local institutions (A1) and between researchers of different disciplines and cultural backgrounds (A2). Subproject A1 aims at evaluating the concept of integrating farmers into the research process. In this phase of the SFB the subproject intends to assess the potential and limits of participatory research and to design and test suitable institutional frameworks for integrating local knowledge and experience of farmers, extension agents, development projects and NGOs in the research process. It will analyze which forms of participation are suitable in which phases of the research process, differentiated by different research subjects. The project will pay particular attention to gender-specific issues of participation. Research under this subproject will be carried out by the SFB's Hohenheim coordinator in close cooperation with the Thai and Vietnamese counterparts. Closely linked to these activities will be the second subproject A2. It will focus on specific issues of interdisciplinary cooperation within an intercultural context. Interdisciplinary cooperation between German, Thai and Vietnamese research institutions and their researchers will present a particular challenge. Moreover, participating farmers in the mountainous areas belong to different ethnic groups with their own cultural traditions and values which again may differ from those of researchers and their institutions. In the SFB's first phase work will focus on research processes in Vietnam. It will observe the process and raise the sensitivity of actors involved with the objective of ensuring the effectiveness and smooth running of interdisciplinary and intercultural cooperation. It is expected that the results will contribute to conceptualizing a theory of intercultural research cooperation. In the next phase of the SFB it is intended to extend the work of subproject A1 to the interaction between farmers in the uplands and lowland dwellers. It is also planned to link up more closely with research programs of other organizations (e.g. IRRI, ISBSRAM, ICRAF, CIRAD). The interdisciplinary-intercultural component (A2) is planned to be expanded in the subsequent phase to include also Thailand.
Das Projekt "The long-term landscape evolution of the Lambert Rift - An integrated thermochronological approach" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachbereich 5 Geowissenschaften durchgeführt. Gegenstand des beantragten Projekts ist die Teilnahme an der deutsch-australischen Antarktisexpedition PCMEGA in die südlichen Prince Charles Mountains im Südsommer 2002/03 einschließlich Probenahme für thermochronologische Untersuchungen und anschließende Probenaufbereitung. Die Expeditionsteilnahme erfolgt mit dem Ziel, Temperatur-Zeit-Pfade für einzelne Grundgebirgskomplexe zu erstellen und auf dieser Basis Verlauf, Verteilung und Tiefe der Krustendenudation nach der letzten metamorphen Überprägung des Grundgebirges zu bestimmen und mit strukturgeologischen und geophysikalischen Daten zu korrelieren. Langfristige Perspektive ist die Analyse der topographischen Entwicklung von MacRobertson Land unter besonderer Beachtung von Struktur und Evolution des Lambert Grabens.
Das Projekt "Advancing the Integrated Monitoring of Trace Gas Exchange between Biosphere and Atmosphere (ABBA)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Descriptions are provided by the Actions directly via e-COST. The global environment is a complex system with numerous intricately linked processes. The land surface-atmosphere interface plays a vital role in the functioning of the Earth System by controlling transfers of energy, momentum and matter. Thus, land atmosphere interactions are important factors controlling and affecting the Earth climate system. To increase and evaluate our understanding of the critical controlling processes, interactions and feedbacks between biosphere and atmosphere, long-term integrated interdisciplinary monitoring efforts are necessary. This COST Action creates a platform for analysis, harmonisation, and synthesis, assessment of future needs and further development of a European integrated monitoring program for comprehensive trace gas flux observations. The existing national and European flux monitoring communities work separately; networking by this COST Action creates added value and is invaluable to advance the continuity, scope and quality of flux monitoring. This Action advances the applicability of produced data in climate and Earth system modelling research, as well as in more operational short to medium term forecasting of weather and air quality. Current methodologies, operationality, dissemination, and coordination will also be addressed in this COST Action. Development of common methodologies, data management systems and protocols will increase the reliability, value and cost-efficiency of European flux observations. Keywords: land-atmosphere interactions, energy and biogeochemical fluxes, multi-species flux monitoring, assimilation in climate and weather forecasting models, climate and global change
Das Projekt "Permafrost Carbon Cycle Observations and Modeling across multiple spatiotemporal scales (PERCCOM)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Permafrost ecosystems in the high Northern latitudes are estimated to store about 1700 Petagram of carbon, which is roughly 50% of the total global belowground carbon, or about double the amount currently contained in the global atmosphere. Future climate projections indicate a strong warming potential for these regions over the next century, which may significantly alter the biogeochemical processes governing the carbon cycle, and thus holds the potential to partly destabilize and release these enormous existing carbon reservoirs. At the same time, the database on carbon exchange fluxes between surface and atmosphere is sparse compared to the size of the region, and significant gaps exist concerning e.g. the coverage of specific landscape units, or observations during the cold season. As a consequence, many processes within the permafrost carbon cycle remain poorly understood, leading to large uncertainties in climate model simulations for this region. To close existing gaps in both flux Arctic flux databases and process understanding, integrated monitoring and modeling tools are required that provide insight into feedback mechanisms between permafrost ecosystems and climate change. This project will establish year-round observation systems in the permafrost region that integrate over multiple spatiotemporal scales to capture carbon flux variability from local to continental levels. The obtained information will be used to identify causal links between environmental drivers and patterns in carbon fluxes based on an integrated framework of atmospheric transport modeling, multivariate statistics, geostatistical inversion and biogeochemical process modeling. The resulting insights into biogeochemical mechanisms will help to improve process representation in modeling frameworks, with the overarching objective to reduce uncertainties in climate projections.
Das Projekt "Reibungsminimierung von hydraulischen Systemen durch Oberflächenstrukturierung (STOKES)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Produktionstechnologie durchgeführt. Economic losings caused by wear and friction are still tremendous, just in Germany the losings are amounted to 100 bn € p.a., for Europe the losses exceed 400 bn €. Recent investigations have shown that laser manufactured structures can exert considerable influence on the tribological behaviour of surfaces. Besides hydrodynamic effects, which can improve friction, the ability of the structures to store lubricant lead to the maintenance of a lubrication film. As the state of the art techniques for laser surface structuring, particularly for tribological applications are mainly on an a R&D level, the production technology is in need of adequate manufacturing techniques. Main topics in this field of research are the inevitable pre- and post-treatment steps of current laser surface structuring techniques as well as the high process durations. The overall goal of this project is to solve both of those tasks by the development and realisation of a process technology, which enables the process chain integrated laser surface structuring of hydraulic parts. The project aims to cover a defined segment of a growing market and the technological achievements will offer the participating SMEs promising options of upgrading their product values. In addition to the direct improvement of single systems by the investigations on demonstration parts within the project, the high transferability of the technique to further products will enable the value enhancement of whole product classes. This offers the possibility of a strong enhancement of the total product output. A consortium has been established, which covers the laser supply and technique as well as the surface preparation technology. Manufacturers of hydraulic parts are members of the consortium in order to close the technological range. Two powerful RTD performers could be gained, which are specialised on the laser processing on the one hand and on tribology on the other hand.
Das Projekt "Fixed Point Open Ocean Observatories Network (FIXO3)" wird vom Umweltbundesamt gefördert und von Natural Environment Research Council durchgeführt. The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Coordinated by the National Oceanography Centre, UK, FixO3 will build on the significant advances achieved through the FP7 programmes EuroSITES, ESONET and CARBOOCEAN. With a budget of 7.00 Million Euros over 4 years (starting September 2013) the proposal has 29 partners drawn from academia, research institutions and SMEs. In addition 14 international experts from a wide range of disciplines comprise an Advisory Board. The programme will be achieved through: 1. Coordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training. 2. Support actions to offer a) access to observatory infrastructures to those who do not have such access, and b) free and open data services and products. 3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation. Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the EU Integrated Maritime Policy. The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.
Origin | Count |
---|---|
Bund | 13 |
Type | Count |
---|---|
Förderprogramm | 13 |
License | Count |
---|---|
open | 13 |
Language | Count |
---|---|
Deutsch | 13 |
Englisch | 12 |
Resource type | Count |
---|---|
Keine | 4 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 12 |
Lebewesen & Lebensräume | 13 |
Luft | 9 |
Mensch & Umwelt | 13 |
Wasser | 10 |
Weitere | 13 |