API src

Found 2 results.

Erforschung der physikalischen Grundlagen und der Voraussetzungen fuer die Modellierung von Schlammstroemen

Das Projekt "Erforschung der physikalischen Grundlagen und der Voraussetzungen fuer die Modellierung von Schlammstroemen" wird vom Umweltbundesamt gefördert und von Universität Basel, Institut für Meteorologie, Klimatologie und Fernerkundung durchgeführt. Im Rahmen dreier Kampagnen zum Liefdeford (NW-Spitzbergen) wurde eine neue Theorie zu den Ausloesemechanismen von Sulzstroemen erstellt. Diese basiert auf Beobachtungen, Feldmessungen sowie auf den Ergebnissen numerischer Modelle. Im Rahmen dieses Projekts werden die physikalischen Grundlagen der Sulzstromausloesung und -bewegung analysiert, wobei neue Ergebnisse einer Kampagne ins Kaerkevagge in Nordschweden (Lappland) miteinbezogen werden. Diese bestaetigen die Theorie in vollem Umfang. Zusaetzlich werden die Voraussetzungen fuer eine numerische Modellierung von Sulzstroemen herausgearbeitet. Im Rahmen dreier Kampagnen zum Liefdeford (NW-Spitzbergen) wurde eine neue Theorie zu den Ausloesemechanismen von Sulzstroemen erstellt. Diese basiert auf Beobachtungen, Feldmessungen sowie auf den Ergebnissen numerischer Modelle. Im Rahmen dieses Projekts werden die physikalischen Grundlagen der Sulzstromausloesung und -bewegung analysiert, wobei neue Ergebnisse einer Kampagne ins Kaerkevagge in Nordschweden (Lappland) miteinbezogen werden. Diese bestaetigen die Theorie in vollem Umfang. Zusaetzlich werden die Voraussetzungen fuer eine numerische Modellierung von Sulzstroemen herausgeleitet.

Hydrologic Prediction in Alpine Environments II

Das Projekt "Hydrologic Prediction in Alpine Environments II" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPFL), Faculte ENAC, IIE, Laboratoire d'ecohydrologie durchgeführt. Proposed research: This research programme proposes to analyze the predictability of the hydrologic behaviour of Alpine ecosystems at the spatio-temporal scales relevant for water management, i.e. at spatial scales of between 200 km2 (e.g. a hydropower production catchment) and around 5000 km2 (e.g. flood management of the Swiss Rhone catchment) and at temporal scales ranging from hours to seasons. Research context: Quantitative stream flow predictions are essential for the sustainable management of our natural and man-made environment and for the prevention of natural hazards. Despite of ever better insights into the involved physical processes at the point scale, many existing catchment scale runoff prediction models still show a lack of reliability for stream flow prediction. The present research programme addresses this foremost issue in Alpine environments, which are the source of many major European rivers and play a dominant role for hydropower production and flood protection. Stream flow prediction in such environments is particularly challenging due to the high spatial variability of the meteorological driving forces opposed to notorious data scarcity in remote and high elevation areas. Project context: The present proposal is a follow-up proposal of the Ambizione project Hydrologic Prediction in Alpine Environments. During the main phase of the project (3 years), certain essential research objectives could not be reached, due namely to the maternity leave of the principal investigator (PI), but also due to additional research questions that emerged at the very beginning of this research. The present follow-up project proposes to complete the research programme during a complementary project phase (2 years). Objectives: The main objective of this research programme is to assess under which conditions simple hydrological models can give reliable stream flow predictions in Alpine environments. This objective will be reached based on an analysis of the variability of natural flow generation processes and of the variability of corresponding state-of-the-art hydrological model outputs. During the main phase of the project, the research was concentrated on the analysis of flow generation processes related to snowmelt, which in Alpine areas dominate the hydrological response over a large part of the year. The achieved results include a new hourly snowmelt model combined to a spatially-explicit precipitation-runoff model, an improved snowfall-limit prediction method for hydrological models and a weather generator that produces coupled temperature and prediction scenarios to analyze how these two meteorological variables integrate to the snow-hydrological response.(...)

1