API src

Found 2 results.

Gletscher und Klima am Übergang vom Spätglazial zum Holozän in den Alpen

Das Projekt "Gletscher und Klima am Übergang vom Spätglazial zum Holozän in den Alpen" wird vom Umweltbundesamt gefördert und von Universität Innsbruck, Institut für Geographie durchgeführt. Gut datierte Gletschervorstöße sind eine wertvolle klimageschichtliche Informationsquelle, weil Gletscher unmittelbar auf Klimaänderungen reagieren. In diesem Zusammenhang ist der Zeitabschnitt von der ausgehenden Jüngeren Dryas (Grönland-Stadial 1) bis zum Ende des Boreals im frühen Holozän besonders interessant. Er ist durch eine sehr rasche Erwärmung um etwa 11.5 ka charakterisiert, die sich dann etwas gedämpfter weiter fortsetzte. Diese Erwärmung wurde durch eine Reihe von klimatischen 'events' (Präboreale Oszillation, Erdalen-event, 9.3 und 8.2 ka event) unterbrochen, die vor allem im europäisch-atlantischen Sektor kurze und kräftige Abkühlung brachten und im Alpenraum in einen Rahmen von allgemein gletscherungünstigen Klimaverhältnissen eingebettet sind. Das Projekt hat zum Ziel, die Gletschervorstöße in diesem Zeitraum näher zu durchleuchten. Der Schwerpunkt wird auf einem System von Moränen liegen, das besonders bei kleineren Gletschern gut erhalten ist, und das eine vermittelnde Stellung zwischen den Moränen der Jüngeren Dryas und denen des 'Little Ice Age' (Neuzeit) einnimmt. Bisher sind derartige Moränen erst an drei Stellen datiert, wobei sich widersprechende Alter und damit zeitliche Einstufungen ergaben (PBO, Erdalen event, 8.2 ka event). Besonders interessant ist daher die Frage, ob und wie kleine Alpengletscher auf den 8.2 ka event reagiert haben, und welche klimageschichtlichen Schlußfolgerungen sich daraus ableiten lassen. Die Testgebiete befinden sich in Gebieten, die für eine klimageschichtliche Interpretation günstig gelegen sind und das entsprechende Moräneninventar aufweisen. Es handelt sich dabei vor allem um die westliche Silvrettagruppe (nordwestlicher Alpenrand mit Übergang zum zentralen Alpenraum), das Karwendelgebirge (nördlicher Alpenrand) und die westlichen Ötztaler Alpen (inneralpines Trockengebiet). Die Datierung soll in bewährter Weise mit den kosmogenen Radionukliden 10Be und 36Cl in enger Zusammenarbeit mit dem Institut für Teilchenphysik an der ETHZ erfolgen. Für die klimageschichtliche Interpretation werden die Energie- und Massenbilanzgleichung an der Gleichgewichtslinie, empirische Niederschlags-Temperaturmodelle und positive Gradtagsmodelle herangezogen. Die dafür zusätzlich nötigen Klimainformationen (vor allem Sommertemperatur) werden aus allen sinnvoll verwertbaren Proxydatenquellen der entsprechenden Zeitabschnitte entnommen. Damit können Änderungen der Niederschlagsstrukturen im Alpenraum und Hinweise auf die atmosphärischen Zirkulationsverhältnisse in Zeiträumen eines raschen Klimawandels hergeleitet werden.

Rock boulders as indicators of soil erosion (RAISE)

Das Projekt "Rock boulders as indicators of soil erosion (RAISE)" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. Landscape and soil changes are strongly coupled to chemical and physical (erosion) weathering and soil production. The erosion rate is preserved in the signal of cosmogenic nuclides (e.g., 10Be) in stream sediments or even directly in a soil profile. The genesis of clastic sediments and soils has been investigated to quantify processes occurring within source areas and catchments, including chemical and physical weathering, and textural and compositional modification of detritus during transition from bedrock to grus and thereafter to soil or a fluvial environment. Well-defined (or -controlled) settings are however needed to calculate mass balances for a given (tectonically active) catchment. Measurements of mid- to long-term erosion rates have recently become more widely available through cosmogenic nuclide techniques. Still, new approaches can be developed to improve our understanding of weathering processes and their rates. Ideal settings and a considerable dataset about mineral weathering are given for the Sila massif in southern Italy (and consequently in a Mediterranean environment). It represents a tectonically active area. The upland plateaus consist of old planation surfaces, bordered by steep slopes, and are characterised by granitic spheroidal boulders which form wide boulder fields. The combination of the major tectonic and relief features with typical upland Mediterranean climate conditions promoted the triggering of severe erosion, that led to the exhumation of the boulders. Data about soil erosion amounts and rates related to the soil formation period would complete the puzzle of the driving forces and enable a more detailed interpretation of landscape and soil evolution. These boulders seemed to 'grow' out of the surface with time. Consequently, by measuring the 10Be content at different levels along a rock boulder (from the soil surface to the top of boulders), the age(s) of exposure could be derived and subsequent total denudation rates will be obtained. This would be an elegant way to calculate erosion rates for different time-steps that cover almost the entire period of soil evolution. Such an approach would give insight into a) the overall denudation and erosion rates over the whole (potential) soil formation period and b) erosion and denudation rates during time segments and would allow for the distinction of different erosion phases during the Pleistocene and Holocene c) volumes of loose material that were removed from the uplands and entered the drainage river system in this time span. (...)

1