s/tierische-exkremente/Tierische Exkremente/gi
Eine Biogasanlage dient der Erzeugung von Biogas durch Vergärung von Biomasse. In landwirtschaftlichen Biogasanlagen werden meist tierische Exkremente (Gülle, Festmist) und Energiepflanzen als Substrat eingesetzt. In nicht-landwirtschaftlichen Anlagen wird Material aus der Biotonne verwendet. Als Nebenprodukt wird ein als Gärrest bezeichneter Dünger produziert. Bei den meisten Biogasanlagen wird das entstandene Gas vor Ort in einem Blockheizkraftwerk (BHKW) zur Strom- und Wärmeerzeugung genutzt.
Das Projekt "Microbial community structure and function in different habitats of subsoils and their role in nutrient mobilization and plant growth (MicroSub)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Institut für Bodenökologie (IBOE).Whereas a lot of results about the role of microbial communities from topsoils for plant growth and - performance have been published in the last two decades, almost nothing is known about the role of microbes in nutrient mobilization in subsoil systems. Furthermore it is unclear if microbes living below 40 cm in soil can be influenced by agricultural management. Both questions should be addressed in the frame of this project. Therefore in the first phase of the project an overall characterization of microbial communities living in different habitats of subsoils should be characterized by high throughput sequencing. These results will give a first insight into microbes living in deeper soil layers and will form the basis for the development of molecular tools to measure abundance and diversity of microbes involved in nitrogen and phosphorus turnover in the field - as well as in the microcosm experiments. Analyzing samples from the field experiment should clarify temporal and spatial heterogeneity of microbial communities and their activities in subsoils. Furthermore the role of hotspots (drilosphere and rhizosphere) in driving microbial performance should be clarified. Mainly the question how nitrogen is metabolized in subsoils will be addressed. By labeling root exudates as well as earthworm excrements with 13C the role of different carbon amounts and quality in the rhizosphere and drilosphere of subsoils in stimulating microbial communities should be analyzed in the central microcosm experiment, by following the 13C label in the microflora. This approach will help to identify possible major factors steering bacteria fungi and archaea in deeper soil layers.
Das Projekt "Sequestration von Veterinärarzneimitteln in Böden - Teilprojekt A3: Veterinärarzneimittel in Böden: Grundlagenforschung zur Risikoanalyse" wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Seit kurzem werden ökologisch wirksame Konzentrationen von antibakteriellen Tierarzneimitteln auch im Boden nachgewiesen. Für eine umfassende Analyse des Risikos fehlen jedoch grundlegende Modellvorstellungen. Hierbei ist zu berücksichtigen, dass die Tierarzneimittel i.d.R. mit Wirtschaftsdüngern auf die Böden gelangen. Zwar gibt es Modellvorstellungen zum Umweltverhalten hydrophober Schadstoffe und zur Wirkung von Wirtschaftsdüngern auf die Bodenlebewelt, doch sind diese nur bedingt übertragbar auf die Dynamik der teilweise polaren Tierarzneimittel im Boden und ihre spezifischen Effekte auf Bodenorganismen. Auch die in der Literatur beschriebenen Effekte von zusätzlichen C-Quellen und Co-Solventien auf Bindung, Abbau und Transport sind aufgrund der komplexen Zusammensetzung von Wirtschaftsdüngern nicht direkt auf Tierarzneimittel übertragbar. Effekte der komplexen Wechselwirkungen von Wirtschaftsdüngern auf die Wirkung der Stoffe im Boden sind unseres Wissens überhaupt nicht untersucht. Übergeordnetes Ziel dieser Forschergruppe ist es daher, anhand mindestens zweier unterschiedlicher Zielstoffe (Sulfadiazin und Difloxacin) erstmals aufzuklären, wie unter dem Einfluss von Wirtschaftsdüngern die Wirkung dieser Stoffe im Boden an ihre Dynamik gekoppelt ist. Wir sehen hierbei mehrere offene Fragen in den Bereichen Dynamik (z.B. Abbau und Metabolisierung, Sequestration sowie skalenabhängige Umverteilung), Wirkung (z.B. auf Struktur und Funktion der Mikroorganismen sowie auf Resistenzbildung) und v.a. bezüglich der Mechanismen der raum-zeitlichen Kopplung von Dynamik und Wirkung der Problemstoffe im Boden (von ms bis Jahren und von der Mineraloberfläche bis zum Bodenprofil). Zur Beantwortung dieser Fragen erscheint es uns in der 1. Projektphase notwendig, vorwiegend anhand von Laborversuchen die relevanten Skalen und Prozesse zu identifizieren sowie die Raten zu quantifizieren, welche die Dynamik und Wirkung der Stoffe im Boden allein und unter dem Einfluss tierischer Exkremente steuern. In einer 2. Phase werden die Prozesse gekoppelt und ihre Relevanz in einem gemeinsamen Freilandversuch überprüft. Damit können wir die für das Umweltverhalten der Zielstoffe wesentlichen Steuergrößen und -mechanismen erstmals aufdecken und quantifizieren. Ziel des TP in Bonn ist die Aufklärung der Bindungsstärke und Verfügbarkeit von Tierarzneimitteln in zwei Referenzböden. Um die 'chemische Verfügbarkeit der Substanzen im Boden zu erfassen, wird eine sequentielle Extraktionsmethode für die Analyten entwickelt und auf eine Alterungszeitreihe der Tierantibiotika im Boden angewandt. Die Bindung der Stoffe an Bodenbestandteile (Mineralphasen, org. Substanz, Gülle-DOC) wird mittels batch-Sorptionsversuchen untersucht; dies wird wiederum an frisch kontaminierten und gealterten Proben durchgeführt. Die Ergebnisse werden mit den anderen Projekten der Forschergruppe vernetzt, um auf die 'Bioverfügbarkeit von sorbierten Fraktionen der Tierarzneimittel rückzuschließen.
Das Projekt "Analytik und Bildung von Metaboliten von n-Nitroseverbindungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Hygiene-Institut, Abteilung Allgemeine Hygiene und Umwelthygiene.Die n-Nitrosoverbindungen spielen als exogene carcinogene Noxen in der Umwelt des Menschen eine wichtige Rolle. Die Aufklaerung des Metabolismus dieser Carcinogene ist fuer die Frage der Krebsentstehung von grossem Nutzen. Die Untersuchungen umfassen die Bildung von Metaboliten aus n-Nitrosoverbindungen in vivo mit isolierten Organenzymen von Versuchstieren und anschliessender Isolierung und Identifizierung. In vivo: Die Isolierung und Identifizierung von Metaboliten in den Exkrementen von Ratten nach oraler Gabe.
Das Projekt "Einfluss von Futteradditiven auf die Wirkung von tierischen Exkrementen bei der Duengung von Nutzpflanzen" wird/wurde ausgeführt durch: Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode, Institut für Pflanzenbau und Saatgutforschung.
Kern der Agrarstrukturerhebung bildet das Grundprogramm mit den Angaben der Bodennutzungshaupterhebung, der Erhebung über die Viehbestände und der Arbeitskräfteerhebung in der Landwirtschaft. Das Ergänzungsprogramm umfasst einige, vor allem für die betriebsstatistischen Erhebungen wichtige Merkmale (Gewinnermittlung und Umsatzbesteuerung, sozialökonomische Verhältnisse, Anfall und Aufbringung tierischer Exkremente, Lagerkapazität bei Gülle, Eigentums- und Pachtverhältnisse an der LF, außerbetriebliche Erwerbs- und Unterhaltsquellen, Einkommenskombinationen, Umweltleistungen).
Das Projekt "Rekonstruktion der Terra Preta-Genese mittels molekularer Biomarker und ihrer substanzspezifischen Stabilisotopenverhältnisse" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften, Professur für Bodenbiogeochemie.In Amazonien dominieren nährstoffarme Oxisole und Ultisole, die nur schwer nachhaltig nutzbar sind. Innerhalb dieser Bodenlandschaft kommen allerdings aufgrund langandauernder anthropogener Nutzung durch präkolumbische Indianer tiefhumose, nachhaltig bewirtschaftbare Böden vor. Unsere bisherigen Untersuchungen belegen, dass die hohen und stabilen Humusvorräte dieser Böden maßgeblich auf pyrogenen Kohlenstoff zurückzuführen sind. Ungeklärt ist bisher die Herkunft ihrer hohen Nährstoffgehalte (bes. N, P, Ca, Mg). Ziel des vorliegenden Forschungsvorhabens ist es deshalb, durch die kleinräumige Analyse von Biomarkern und ihrer Stabilisotopenverhältnisse sowie von P-Bindungsformen Hinweise auf die Terra Preta-Genese zu bekommen. Insbesondere soll zwischen dem Eintrag menschlicher und tierischer Exkremente sowie zwischen aquatischer und terrestrischer Biomasse unterschieden werden. Von den Ergebnissen der Untersuchungen erwarte ich gezielte Aussagen über die Anreicherung der Terra Preta-Böden mit Nährstoffen sowie die Heterogenität der Eintragspfade.
Die wichtigsten Fakten Der Stickstoffüberschuss der Gesamtbilanz pro Hektar landwirtschaftlich genutzter Fläche ist seit 1992 im 5-Jahres-Mittel um 34 % zurückgegangen. Das Ziel der Bundesregierung ist es, den Stickstoffüberschuss der Gesamtbilanz im Mittel der Jahre 2028 bis 2032 auf 70 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche zu senken. Bei Fortführung des Trends der letzten zehn Jahre würde das Ziel erreicht werden. Welche Bedeutung hat der Indikator? Stickstoff ist ein unentbehrlicher Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingetragene reaktive Stickstoffverbindungen haben jedoch gravierende Auswirkungen auf Klima , Artenvielfalt, Landschaftsqualität und Wasserversorgung: Stickstoff, der nicht durch Pflanzen aufgenommen wird oder wieder in Luftstickstoff umgewandelt wird, führt zur Verunreinigung des Grundwassers, Nährstoffanreicherung ( Eutrophierung ) von Gewässern, Versauerung von Landökosystemen sowie zur Entstehung von Treibhausgasen. Eine Einführung in die Stickstoff-Problematik findet sich in der Publikation „Reaktiver Stickstoff in Deutschland“ ( UBA 2015) sowie im UBA-Umweltatlas "Reaktiver Stickstoff" . In Deutschland sind vor allem Regionen mit dichtem Viehbesatz problematisch: Durch den hohen Anfall an Wirtschaftsdünger (tierische Exkremente) wird dort oft deutlich mehr Stickstoff auf die Flächen ausgebracht, als die Kulturpflanzen aufnehmen und in Biomasse umsetzen. Eine Maßzahl für die potenziellen Stickstoffeinträge aus der Landwirtschaft in die Umwelt ist der Stickstoffüberschuss. Wie ist die Entwicklung zu bewerten? Von 1992 bis 2020 ist der Stickstoffüberschuss der Gesamtbilanz pro Hektar landwirtschaftlich genutzter Fläche im 5-Jahres-Durchschnitt um 34 % gesunken. Landwirt*innen setzen den Stickstoff also effizienter ein, ertragsstarke Kulturen sind im Anbauumfang gestiegen und auch die Futterverwertung bei den Nutztieren hat sich verbessert. In den letzten Jahren kam zudem die Umsetzung einer wirksameren Düngegesetzgebung, gesunkene Tierzahlen, sowie geringere Absatzzahlen für mineralische Düngemittel als Folge von Dürrejahren und angestiegenen Mineraldüngerpreisen hinzu. Wenn sich der Trend der letzten 10 Jahre so fortsetzen würde, wird das Ziel der Deutschen Nachhaltigkeitsstrategie , den Stickstoffüberschusses auf maximal 70 kg N/ha*a im gleitenden 5-Jahres Mittel bis 2030 zu begrenzen, erreicht werden. Aber die Stickstoffbilanz zeigt auch: fast die Hälfte des eingesetzten Stickstoffes gelangt nicht in die Produkte, die Stickstoffeffizienz ist also immer noch relativ niedrig (BMEL 2024, Statistischer Monatsbericht, MBT-0111260-000) . Das weiterhin Handlungsbedarf bei der Reduktion von Stickstoff in die Umwelt besteht, zeigen auch die Indikatoren „ Nitrat im Grundwasser " und „ Eutrophierung durch Stickstoff “, die eng mit dem Stickstoffüberschuss verbunden sind und keine positiven Trends anzeigen. Wie wird der Indikator berechnet? Der Stickstoffüberschuss wird aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelt, die sich aus Biogas-, Stall- und Flächenbilanz zusammensetzt. Berechnet wird er aus der Differenz von landwirtschaftlicher Stickstoffzufuhr (z. B. Düngemittel, Futtermittel, Saat- und Pflanzgut, Einträge aus der Atmosphäre ) und -abfuhr (tierische und pflanzliche Produkte). Die Daten werden jährlich vom Julius-Kühn-Institut und der Universität Gießen berechnet und vom BMEL veröffentlicht ( BMEL 2024, Statistischer Monatsbericht, MBT-0111260-000 ). Hinweise zur Berechnungsmethode findet man bei Bach et al. 2011 und Häußermann et al. 2019 . Um Schwankungen zwischen den Jahren zu bereinigen, wird das gleitende 5-Jahres-Mittel errechnet. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel "Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss" .
Das Projekt "Untersuchung der Tierwohl-Umwelt-Interaktion bei Milchkühen" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Landtechnik.
Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch). Treibhausgas-Emissionen aus der Landwirtschaft Das Umweltbundesamt legt im Rahmen des Bundes-Klimaschutzgesetzes (KSG) eine Schätzung für das Vorjahr 2023 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2022. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 75,7 % der gesamten Methan (CH 4 )-Emissionen und 74,5 % der Lachgas (N 2 O)-Emissionen in Deutschland aus der Landwirtschaft. Im Jahr 2023 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 52,2 Millionen Tonnen (Mio. t) Kohlendioxid (CO 2 )-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 7,7 % der gesamten Treibhausgas -Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 60,3 Millionen Tonnen (Mio. t) Kohlendioxid (CO 2 )-Äquivalente bzw. 8,9 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden. In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt. Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 64,7 % im Schätzjahr 2023 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 30,1 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,4 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO 2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO 2 -Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne LULUCF ) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2023“). Treibhausgas-Emissionen der Landwirtschaft nach Kategorien Quelle: Umweltbundesamt Diagramm als PDF Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2023 Quelle: Umweltbundesamt Diagramm als PDF Klimagase aus der Viehhaltung Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2022 machten die Methan-Emissionen aus der Fermentation anteilig 75,9 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (95 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 19,2 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Ein geringer Anteil (4,3 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (46,0 Mio. t CO 2 -Äquivalente) und 2023 (32,3 Mio. t CO 2 -Äquivalente) um etwa 29,8 % zurückgegangen. Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N 2 O) und seiner Vorläufersubstanzen (Stickoxide, NO x und Stickstoff, N 2 ). Dieser Bereich trägt zu 14,1 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2023 um rund 29 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert. Somit lassen sich in 2023 rund 35,5 Mio. t CO 2 -Äquivalente direkte THG-Emissionen (das sind 68,1 % der Emissionen der Landwirtschaft und 5,3 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der Deposition unberücksichtigt. Klimagase aus landwirtschaftlich genutzten Böden Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO 2 )-Freisetzung infolge von Landnutzung und Landnutzungsänderungen (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO 2 -Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt werden 13,7 Mio. t CO 2 -Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert. Es werden direkte und indirekte Emissionen unterschieden: Die direkten Emissionen stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen den Hauptanteil (das entspricht 72,2 % oder 43,9 kt Lachgas-Emissionen bzw. 11,6 Mio. t CO 2 -Äquivalente) aus. Seit der Berichterstattung 2023 werden auch zusätzlich Komposte aus Bio- und Grünabfall berücksichtigt. Quellen für indirekte Lachgas-Emissione n sind die atmosphärische Deposition von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen. Im Zeitraum 1990 bis 2023 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 29 % ab. Gründe für die Emissionsentwicklung Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen Dürre im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten. Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen Das von der Bundesregierung in 2019 verabschiedete und 2021 novellierte Bundes-Klimaschutzgesetz legt fest, dass die Emissionen der Landwirtschaft (inklusive der Emissionen aus den landwirtschaftlichen mobilen und stationären Verbrennungen) bis 2030 auf 56 Mio. t CO 2 -Äquivalente reduziert werden müssen. Auf Basis der vorgelegten Daten werden die Unterschreitungen der Emissionsmengen in 2022 anteilmäßig auf alle folgenden Jahre umgelegt: für 2030 erhöht sich damit die zulässige Emissionsmenge so auf 57,4 Mio. t CO 2 -Äquivalente. Weiterführende Informationen zur Senkung der Treibhausgas -Emissionen finden Sie auf den Themenseiten „Ammoniak, Geruch und Staub“ , „Lachgas und Methan“ und „Stickstoff“ .
Origin | Count |
---|---|
Bund | 90 |
Kommune | 1 |
Land | 14 |
Type | Count |
---|---|
Förderprogramm | 85 |
Text | 15 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 10 |
offen | 92 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 101 |
Englisch | 11 |
Resource type | Count |
---|---|
Datei | 2 |
Dokument | 4 |
Keine | 79 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 78 |
Lebewesen & Lebensräume | 102 |
Luft | 64 |
Mensch & Umwelt | 103 |
Wasser | 74 |
Weitere | 102 |