API src

Found 23 results.

Europäische Ecodesign-Initiative

Produktentwickler*innen und Designer*innen stellen bei der Entwicklung neuer Produkte und Dienstleistungen die Weichen für die Umweltbelastung eines Produktes über seinen gesamten Lebensweg. Die "Entwicklung einer transnationalen Lernfabrik zur ökologischen Produktgestaltung" im Rahmen eines EU-INTERREG-Projektes im Ostseeraum namens "EcoDesign Circle" hatte zum Ziel, Fragen der ökologischen Produktgestaltung und Kreislaufwirtschaft in einer realen Gestaltungs- und Produktionsumgebung zu demonstrieren und Auswirkungen von Designentscheidungen auf den gesamten Lebenszyklus eines Produktes sichtbar zu machen. Das Konzept und der Inhalt der Lernfabrik Ökodesign wurde in drei Schritten entwickelt: Erfassung der aktuellen Situation (Bedarfe, Angebote) u.a. in den Ostseeanrainerstaaten über Stakeholderinterviews, Entwicklung des Konzeptes und Pilotierung der Lernfabrik in Deutschland und den Ostseeanrainerstaaten. Ergebnisse des Projektes sind das Konzept der Lernfabrik, ein Leitfaden zur Durchführung der Lernfabrik (Workshop-Manual), eine Anleitung zum Aufbau einer Lernfabrik (Guideline) und ein Verstetigungsplan. Die Lernfabrik Ökodesign hat das Ziel, dass Praktizierende und Lehrende aus Design, Ingenieurswesen und Geschäftsentwicklung lernen, wie man Kreislaufsysteme designt. Dabei durchlaufen sie einen Ökodesign-Prozess, bei dem kreative Methoden des Design-Thinking mit analytischen Methoden des Ökodesigns kombiniert werden. Gleichzeitig erhalten sie über einen Feldbesuch in eine Produktionsumgebung einen Einblick, welchen Einfluss Produktentwickler*innen auf die Umweltauswirkungen während der Fertigung haben. Die Ökodesign Lernfabrik wird als Training vom Fraunhofer IZM für Einzelpersonen oder Institutionen angeboten (www.ecodesignlearningfactory.com). Diese Dokumentation als auch die erstellten Materialien sollen auch eine Übertragbarkeit anderswo ermöglichen. Quelle: Forschungsbericht

Enhanced plant productivity through control of lifespan (CROPLIFE)

Das Projekt "Enhanced plant productivity through control of lifespan (CROPLIFE)" wird vom Umweltbundesamt gefördert und von Universität Kiel, Zentrale Verwaltung, Referat Forschung durchgeführt. The world-wide demand for primary plant products to be used for food, feed and fuel is increasing dramatically. The foreseen climate changes are expected to have a negative impact on plant productivity in addition. Future agriculture urgently needs new crop plant varieties with enhanced and sustainable productivity. To meet this challenge, CropLife focuses on leaf lifespan as a major determinant of plant productivity and aims to develop new breeding strategies for prolonging leaf photosynthesis and delaying senescence processes. The network focuses on barley and perennial ryegrass, which are excellent models for research and crop development in Europe. The CropLife primary objectives will be addressed in the four work packages. These are: the identification of key factors initiating senescence (1), and proteins regulating leaf lifespan (2), the elucidation of molecular mechanisms of senescence-associated protein degradation and nitrogen remobilization (3), and the analysis of lifespan and exploitation of genetic variation in lifespan in order to breed new varieties with increased productivity (4). CropLife provides cross-sector experience by integrating partners from the public and private sectors. The training programme includes state-of the-art local training activities and network-wide courses, summer schools and workshops. Young researchers will be trained in a range of cutting edge research skills, as well as in complementary skills that will enhance their career prospects. Further benefits will arise from secondments in partner laboratories and cross-sector visits to associated partners from the private sector. To guarantee training at the most advanced level, outstanding scientists in the field will be integrated as visiting researchers. Workshops and a final network conference will provide a platform for dissemination of the network s achievements which are expected to increase the competitiveness of European plant research and agriculture.

Energy savings from smart operation of electrical, process and mechanical equipment (ENERGY-SMARTOPS)

Das Projekt "Energy savings from smart operation of electrical, process and mechanical equipment (ENERGY-SMARTOPS)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. The drive across the world towards energy efficiency and reduction of CO2 emissions is leading to new industrial processes and new ways of operating existing processes. In particular, the control and operation of processes, rotating machinery and electrical equipment is becoming radically more integrated giving new opportunities for energy saving through equipment management, automation, and optimization. In the light of these challenges, there is a need for new training and research action to address technology gaps at the interfaces between the process, mechanical and electrical domains, and to realize energy savings from integrated operation. The ENERGY-SMARTOPS consortium has detailed plans for cross-disciplinary training of a cohort of Early Stage engineering researchers through personalized programmes which will provide experience of research as an exciting and rewarding career, in-depth training in research projects at the host site and on intersectorial secondments, local and network-wide courses on technical topics, complementary skills training, and participation in workshops and symposia. The research programme is organized into three themes: (i) Equipment and process monitoring integrating multiple measurements from the process, mechanical and electrical sub-systems, (ii) Integrated automation capturing information from all three subsystems, and devising new algorithms that explicitly manage the interfaces and interactions between them, (iii) Optimization to provide energy savings by better integration of operations across the process-mechanical-electrical interfaces. The consortium involves universities and the R and D groups of end-user companies and an industrial technology supplier. Its investigators are experts in electrical machinery and power electronics, compressors and pumps, modeling and optimization, instrumentation, signal analysis, equipment condition monitoring, and automation of oil and gas, steel and chemical processes. Prime Contractor: University London, Imperial College of Science, Technology and Medicine; London; United Kingdom.

Assessment of Air Pollution Effects on Cultural Heritage - Management Strategies (CULT-STRAT)

Das Projekt "Assessment of Air Pollution Effects on Cultural Heritage - Management Strategies (CULT-STRAT)" wird vom Umweltbundesamt gefördert und von Umweltbundesamt durchgeführt. CULT-STRAT will establish a scientific reference for developing strategies for policy and decision-makers on European and national levels within the CAFE Programme and for heritage managers for strategic decisions at local level. It will do this through a choice of material indicators and pollution threshold levels based on best available scientific data including deterioration models, spatial distribution and mapping of pollutants and of stock of materials at risk, cost estimates, comparison studies off different conservation approaches. Damage caused to objects of cultural heritage belongs to the most serious among the detrimental effects of anthropogenic air pollutants as it endangers a vital part of the European identity. There is therefore an urgent need to include the impact of pollutants on cultural heritage alongside the human health and parts of the ecosystem that are already concerned in the EU Directives on urban air quality. This is especially relevant for the CAFE (Clean Air for Europe) programme of the Commission and the Community interventions through the 'Culture 2000' framework programme and the structural funds. The overall aim is to identify material indicators and threshold levels of pollutants to be used for development of strategies for sustainable maintenance and preventive conservation of European cultural heritage and air quality policy to reduce damage. The models will permit ranking of the effects of pollutants on corrosion and soiling of materials. The air pollution models will be related to local fluxes, including indoor concentrations. The stock of cultural heritage materials at risk in selected areas (Paris, Rome, Florence, Prague, Madrid, and Berlin) will be used for assessment and mapping of areas where cultural heritage objects are endangered. Prime Contractor: Korrosionsinstitutet Sci AB, R&D Department Atmospheric Corrosion, Stockholm SE.

COSY (EU-RTN): Complex Solid State Reactions for Energy Efficient Hydrogen Storage

Das Projekt "COSY (EU-RTN): Complex Solid State Reactions for Energy Efficient Hydrogen Storage" wird vom Umweltbundesamt gefördert und von GKSS Forschungszentrum Geesthacht GmbH in der Helmholtz Gemeinschaft, Institut für Werkstoffforschung,Werkstofftechnologie durchgeführt. Reactive Hydride Composites reveal great potential as hydrogen storage materials as they overcome the thermodynamic limitations hindering the use of light-weight complex hydrides. However, their sorption kinetics is still slow due to the fact that the hydrogen sorption process takes place within complex solid state reactions. It is aim of this project to explore the fundamental mechanisms involved in these reactions. For this, experimental studies on sorption kinetics, thermodynamics, crystal structure and electronic properties of the nano-structured materials are cross-linked to ab-initio calculations and theoretical modelling. The results will provide a basis to improve material properties and to develop new catalysts for hydrogen sorption. Finally, the optimization of synthesis methods and in particular the up-scaling of hydrogen storage materials preparation will be explored in collaboration with manufacturers.

NESPA (Nanoengineered Superconductors for Power Applications) 2006-2010: Coordination of this europe-wide network consisting of 13 partners from universities, research institutes and industry

Das Projekt "NESPA (Nanoengineered Superconductors for Power Applications) 2006-2010: Coordination of this europe-wide network consisting of 13 partners from universities, research institutes and industry" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. durchgeführt. High temperature superconductors (HTS) have an enormous potential for significantly improving existing power systems, such as cables, motors, magnets and generators, because higher power densities and reduced losses can be achieved by replacing copper wires . Superconducting materials will also enable completely new technologies, such as fault current limiters. As examples for innovative applications, advanced energy systems for 'all-electrical' ships, off-shore wind mills and transportation systems should be mentioned. Although research on the materials aspects of HTS has been highly successful in the past, the development of low cost - high performance HTS materials remains a key factor for success and requires significantly more basic and applied materials re search, in order to bring these emerging materials to the market. The development of HTS materials for power applications is a highly multidisciplinary task involving chemistry, physics, materials science and electrical engineering. Currently, three quite different routes are addressed: (i) the construction and implementation of first 'real' industrial systems based on HTS materials, (ii) the development of 'coated conductors' that will result in an economic HTS wire production, and (iii) the controlled nano-engineering of highly textured bulk and thin film materials to enhance flux pinning and thus to improve the material performance. The planned RTN will strongly accelerate these developments by forming an international research team with leading experts i n different areas, who are willing and keen to train young researchers on a broad range of topics, from basic flux pinning investigations, advanced chemical processing of nano-engineered HTS materials or new concepts for low ac loss conductors, to industrially relevant subjects, such as IPR, quality management or cryogenic engineering. This will result in highly trained human resources that will be needed in the power sector in the very near future. - WP1 Nano-engineering of superconducting materials - WP2 Advanced electrical and structural characterization - WP3 New concepts for low ac-loss coated conductors - WP4 Industrial aspects of superconducting power application systems - WP5 Training and Transfer of Knowledge - WP6 Progress Monitoring, Management and Exploitation.

Toxin Production in Cyanobacteria

Das Projekt "Toxin Production in Cyanobacteria" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Biologie durchgeführt. In many lakes and rivers toxic cyanobacteria are found. This causes severe problems for recreation and drinking water production. The toxicity of cyanobacteria is found to be highly vanable. Toxic blooms can change from toxic to non-toxic and vise versa. It is not clear how far this is caused by a succession of toxic and non-toxic strains within one species or, by the changes in toxicity of one population. Morphological analyses and physiological knowledge cannot give a solution here. Little is known of the relation of this toxin with the food-web in fresh waters. Is this toxin produced to prevent grazing, what is the distribution of this toxin in the food-web. In the synthesis of Microcystin the toxin produced by the cyanobacterium Microcystis the enzyme microcystin-synthetase plays a crucial role. Recently two institutes of this network have sequenced the genes if this enzyme. With this information it becomes possible to produce probes and construct-strains which are extremely important tools for physiological and ecological research concerning toxin production in continuous cultures and in natural systems. In this multidisciplinary research programme molecular biological tools will be developed and used to unravel the conditions under which this toxin is produced and what its influence is on the food-web of the natural systems. A network-programme has been developed to train young post-docs to incorporate molecular biological, physiological and ecological theories and techniques to study one problem: toxin production in cyanobacteria. - The programme contains training on the job, short training couses, working visits, and an 8 week workshop. Important topics are: - The production of DNA-probes and reporter strains to be used in physiology and ecology to recognize toxin production in laboratory and field populations. - Toxin production will carefully compared with ecological relevant conditions in laboratory and field systems. - In an eight-week field traing-course the whole team of the network is training to use all information and molecular tools to study the toxicity of a field population of Microcystis and to compare this with the results of the physiological and enclosure studies. Prime Contractor: Universiteit van Amsterdam, Research Institute voor Stoffen in Ecosystemen, Amsterdam NL.

Hintergründe und Auswirkungen der EU Politik zur Förderung der Bioenergie (AGRINERGY)

Das Projekt "Hintergründe und Auswirkungen der EU Politik zur Förderung der Bioenergie (AGRINERGY)" wird vom Umweltbundesamt gefördert und von Ecologic, Institut für Internationale und Europäische Umweltpolitik durchgeführt. Das Projekt AGRINERGY zielt darauf ab, politischen Entscheidungsträgern Möglichkeiten aufzuzeigen, wie Umweltpolitik, die gemeinsame Agrarpolitik (GAP) und die europäische Bioenergiepolitik zukünftig stärker miteinander in kohärente Abstimmung gebracht werden können. Hierfür werden die Auswirkungen der EU Politik im Bereich Bioenergie auf ländliche Entwicklung sowie auf Landwirtschaft und Umwelt analysiert. Das Projekt leistet damit einen wichtigen Beitrag für politische Entscheidungen sowie für weiterführende Diskussionen und Forschung. Ecologic ist als Projektkoordinator an allen fachlichen Berichten des Projektes beteiligt. Hierzu gehört ein umfassender Bericht über die derzeitige Bioenergienutzung in Europa und einige Hintergrundpapiere. Des Weiteren werden drei 'Policy Briefs' zu Strategien zur Vermeidung von Umweltproblemen bei der Biomasseproduktion und zu den Fragen, wie Wissenstransfer und Informationen für ländliche Räume gefördert werden und wie Standards für eine nachhaltige Bioenergienutzung in Agrar- und Welthandelspolitik einfließen kann, erstellt. Darüber hinaus ist Ecologic verantwortlich für die Organisation und Durchführung von zwei Veranstaltungen. Ein Expertenseminar im November 2007 soll dafür genutzt werden, eine gemeinsames Verständnis zu den Wechselwirkungen zwischen verschiedenen Politikfeldern und Themenbereichen, die von der Bioenergiepolitik betroffen sind, zu entwickeln und zu ersten übereinstimmenden Ergebnissen zu kommen. Eine sich im Mai 2008 anschließende Konferenz mit Verantwortlichen aus relevanten Politikfeldern sowie Vertretern internationaler Konventionen, von Nichtregierungsorganisationen und aus Wirtschaft und Wissenschaft, soll insbesondere die Wechselwirkungen zwischen der Landwirtschaft, dem Energie- und dem Umweltsektor herausstellen.

Isotope forensics meets biogeochemistry - linking sources and sinks of organic contaminants by compound specific isotope investigation (CSI:ENVIRONMENT)

Das Projekt "Isotope forensics meets biogeochemistry - linking sources and sinks of organic contaminants by compound specific isotope investigation (CSI:ENVIRONMENT)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Isotopenbiogeochemie durchgeführt. The initial training network CSI: ENVIRONMENT aims at training 16 young scientists in the discipline of compound-specific isotope analysis (CSIA) for environmental and forensic investigations. Linking sources and sinks of organic contaminants is a major challenge in contemporary environmental science. Chemicals can be released to the environment when leaving their field of application, intended or accidentally. It is a challenge to relate the origin of spills, transport and subsequent distribution in the environment and to analyse potential sinks and elimination pathways at a local, regional and global scale. This network brings together international experts in the field of isotope chemistry and related fields for training the next generation of young scientists in the field of environmental forensics using stable isotope techniques. Isotope analysis offers a unique opportunity to obtain information of sources, transport, degradation pathways and sinks of contaminants in the environment which will be urgently needed in the future. Multi-element isotope fingerprinting of chemically complex substances can be used to elucidate transformation pathways making use of isotope fractionation processes altering the reactive position and to analyse the isotope composition of an organic molecule to track sources. Concepts and applications are available for the more simple organic contaminants such as BTEX, chlorinated ethenes and MTBE but not for more complex organic contaminants such as pesticides or brominated flame retardants. Thus, the aim of this ITN is to train young scientist in development of concepts for the application of isotope tools to assess the fate of organic chemicals in the environment. Young scientists will be educated in the field of isotope forensics, pushing forward the frontiers of current isotope techniques to develop new areas of isotope applications in both fundamental and applied environmental sciences.

PAH Anaerobic Biodegradation Assessment by Stable Isotope Technologies (BASIS)

Das Projekt "PAH Anaerobic Biodegradation Assessment by Stable Isotope Technologies (BASIS)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Isotopenbiogeochemie durchgeführt. Hydrocarbon pollution has been recognized to be a major environmental and human health problem that require accurate exposure assessment and remediation. Oil and oily products are extremely complex mixtures, containing hundreds (even thousands) of different compounds, among which polycyclic aromatic hydrocarbons (PAHs) are of greatest regulatory concern due to their potential toxic, mutagenic and carcinogenic properties. 2- and 3-ring PAHs are water soluble and can be transported over significant distances. Natural attenuation is a low-cost bioremediation option widely accepted for the clean-up of hydrocarbon polluted sites. Many efforts have been made to study and enhance aerobic biodegradation of hydrocarbons. However, anaerobic degradation of oily products is practically unknown, although in many environments, such as aquifers, marshes or intertidal zones oxigen is often a limiting factor. Some studies have proven the ability of microorganisms to degrade aromatic hydrocarbons in different conditions, but there is a significant gap of knowledge regarding in situ anaerobic biodegradation of these compounds (metabolism, key microorganisms involved, etc.). Stable isotope techniques (compound specific stable isotope analysis, CSIA, and stable isotope probing, SIP) are novel techniques which can help overcoming this situation, providing valuable information on biodegradation and coping suitably with linking biodegradation processes to microbial taxa. Despite their clear advantatges these techniques have seldom been applied to field studies. In the light of this situation, the main goals of this proposed project are to assess in situ biodegradation of PAHs under anaerobic environments in marine and fresh water systems, to describe microbial activities and to identify microbial key players. The project will be carried out in the Isotope Biogeochemistry Department at the UFZ (Leipzig), which provide outstanding facilities for the achievement of these objectives.

1 2 3