Das Projekt "Entwicklung und Evaluation eines Webcam Luminometers für den Leuchtbakterienhemmtest" wird vom Umweltbundesamt gefördert und von Technische Hochschule Ulm, University of Applied Sciences Labor Biotechnologie, Fakultät Mechatronik und Medizintechnik durchgeführt. Vibrio fischeri is a luminescent marine bacterium whose luminous intensity depends on the toxicity of its surroundings. By comparing light intensity before and after a certain contact time with a water sample, these bacteria can be used to detect various environmental toxins including unknown ones. A sample is considered nontoxic when the inhibition is less then 20 percent after 30min contact. In Germany, the luminescent bacteria inhibition test described in DIN EN ISO 11348 (Part 1) is a compulsory test for waste waters of industrial origin. Commercial Luminometers use Photomultiplier tubes for detection. PMTs are highly sensitive measurement devices hence the price of commercial instruments can be up to 15,000€ (including VAT). Our group has some experience with detection of low (fluorescent) light intensities by CCD cameras and webcams. In a preceding student research project we were able to prove that selected webcams are sensitive enough to detect luminescence by Vibrio fischeri in the low concentrations used in commercially available test kits. We now have developed a simple but sensitive Luminometer based on a low priced modified (black and white CCD chip and long exposure) webcam. The inhibition of various bacteria concentrations was compared to a commercial device as well as tests with actual samples. The webcam takes a picture of the light emitting test sample. The software then calculates the average luminescence of a pre defined region of interest. An additional feature is a LED for measurement of optical density which is needed to produce bacteria suspensions with standard concentrations.
Die Festung Ehrenbreitstein ist der ideale Standort zur Beobachtung des Zusammenflusses von Rhein und Mosel am Deutschen Eck in Koblenz. Aus ca. 100 m Höhe über dem Wasserspiegel liefert die WebCam der Bundesanstalt der Gewässerkunde jede Minute ein aktuelles Bild der Situation. Oftmals sind deutliche Unterschiede in der Färbung des Wassers sichtbar, besonders bei sich ändernden Wasserständen in den beiden Flüssen. Grund für die unterschiedliche Farbe sind die wechselnden Schwebstoffanteile. Auch der Wasserstand lässt sich mit einem Blick erkennen. Ab einem Wasserstand von ca. sieben Metern am Pegel Koblenz/Rhein wird der Platz vor dem Reiterstandbild Kaiser Wilhelms I allmählich überflutet. Dieser Service wird ermöglicht mit freundlicher Unterstützung der Verwaltungen von Burgen, Schlösser, Altertümer Rheinland-Pfalz und dem Landesmuseum Koblenz.
Das Projekt "WebSnow: Integration of Webcam data for deriving Snow cover and snow depth from Sentinel-1, Sentinel-2 and Pléiades data" wird vom Umweltbundesamt gefördert und von Technische Universität Wien, Department für Geodäsie und Geoinformation (E120) durchgeführt. Die Variabilität der Schneebedeckung hat einen maßgeblichen Einfluss auf das Klima, auf die Ökosystemvielfalt und auf sozioökonomische Aspekte. Schneefall und die Persistenz der Schneedecke sind stark von der Temperatur in der Atmosphäre und dem Niederschlag abhängig und sind somit eng mit Klimaänderungen verbunden. Im Alpenbogen ist Schnee von hoher sozioökonomischer Bedeutung, nicht nur für den Wasserhaushalt, sondern auch für Naturgefahren und den Tourismus. Um die Auswirkungen des Klimawandels quantifizieren zu können sind Informationen über die Schneebedeckung sowie deren saisonale als auch jährliche Veränderung für die unterschiedlichsten Interessensgruppen von großer Bedeutung. Daher besteht ein großer Bedarf an kontinuierlichen und zuverlässigen Messungen der zeitlichen und räumlichen Variabilität der Schneedecke. Dabei zählen die Schneemenge als Indikator des gespeicherten Wassers als auch die Dauer der Schneebedeckung zu den wichtigsten Parametern.
Die derzeit zur Verfügung stehenden Methoden zur Quantifizierung der Schneebedeckung als auch der Schneemächtigkeit haben alle Stärken und Schwächen. So werden beispielsweise zur Erfassung der Schneebedeckung während der Schneeschmelze vermehrt SAR (Synthetic Aperture Radar) Satellitendaten herangezogen, wohingegen bei trockenen Schneeverhältnissen vorwiegend optische Satellitendaten verwendet werden. Die limitierenden Faktoren der optischen Fernerkundung sind dabei die Verfügbarkeit räumlich hoch aufgelöster Bilder sowie die Wolkenbedeckung. Für die Abschätzung der Schneemächtigkeit von kleinräumigen Testgebieten werden in erster Linie photogrammetrische Methoden basierend auf Stereo-Luftbildern von UAVs oder Flugzeugen angewandt. Die Möglichkeiten der operationellen Abschätzung der Schneemächtigkeit für große Gebiete anhand von Satellitendaten ist bislang aber noch eine überwiegend ungeklärte Fragestellung. Ebenso ist das Bildmatching von Schneeoberflächen aufgrund der geringen Textur eine große Herausforderung. Alternativen zur Flugzeug- bzw. Satelliten-getragenen Schneehöhenabschätzung stellt die terrestrische Photogrammetrie dar. Erst kürzlich wurden erstmals Webcam Bilder mit hoher zeitlichen und räumlichen Auflösung zur Abschätzung der Schneebedeckung und Mächtigkeit angewandt, jedoch vorwiegend unter bekannten Bedingungen (z.B. Kameramodell) sowie in Kombination mit Wetterstationen. Der zentrale Motivationsgrund des beantragten Projekts WebSnow ist die Verbesserung bestehender Algorithmen zur Ableitung der Schneebedeckung aus Sentinel-1 und Sentinel-2 Daten unter Einbeziehung von Webcam Bildern. Diese werden von der Fa. Bergfex, welche Zugang zu Hunderten Webcams im Alpenbogen Zugriff hat, zur Verfügung gestellt. Zusätzlich soll das Potential für die großflächige Abschätzung der Schneemächtigkeit mittels Bildmatching von Pléiades Daten in Kombination mit Webcam Bildern untersucht werden. (Text gekürzt)