Das Projekt "International Surface Ocean - Lower Atmosphere Study (SOLAS)" wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Chemische Ozeanographie.Since 2004, the International Surface Ocean - Lower Atmosphere Study (SOLAS) project is an international research initiative aiming to understand the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere. Achievement of this goal is important to understand and quantify the role that ocean-atmosphere interactions play in the regulation of climate and global change. SOLAS celebrated its 10 year anniversary in 2014. In the first decade, the SOLAS community has accomplished a great deal towards the goals of the original Science Plan & Implementation Strategy and Mid-term Strategy (Law et al. 2013) as highlighted by the open access synthesis book on 'Ocean Atmosphere Interactions of Gases and Particles' edited by Liss and Johnson and the synthesis article in Anthropocene from Brévière et al. 2015. However there are still major challenges ahead that require coordinated research by ocean and atmospheric scientists. With this in mind, in 2013, SOLAS has started an effort to define research themes of importance for SOLAS research over the next decade. These themes form the basis of a new science plan for the next phase of SOLAS 2015-2025. SOLAS being a bottom-up organisation, a process in which community consultation play a central role was adopted. After two sets of reviews by our four sponsors (SCOR, Future Earth, WCRP and iCACGP), the SOLAS 2015-2025 Science Plan and Organisation (SPO) was officially approved.
Das Projekt "Die Auswirkung extremer Schmelzereignisse auf die zukünftige Massenbilanz des grönländischen Eisschildes" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Potsdam-Institut für Klimafolgenforschung e.V..Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Vergleichende Bewertung möglicher Wirkungen, Nebenwirkungen und Unsicherheiten von CE-Verfahren und Maßnahmen zur Emissionsreduktion (ComparCE-2)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.Das Hauptziel des ComparCE Projekts ist eine umfassende Einschätzung verschiedener Climate Engineering (CE) Maßnahmen gegeneinander und gegenüber Mitigationsbemühungen. Dabei sollen insbesondere Modelunsicherheiten berücksichtigt werden, da eine solche Einschätzung im CE Fall ausschließlich auf Modellsimulationen beruht. In diesem Projekt wollen wir darüber hinaus Fragen beantworten, die unserer Meinung bislang im CE Zusammenhang nicht bearbeitet wurden. Als ersten und zentralen Schritt wollen wir untersuchen welche Metriken und Indikatoren für die Beurteilung von CE Methoden, und somit für das gesamte Schwerpunkt Programm, wichtig sind und wie diese sich von den Metriken im Kontext von Klimawandel unterscheiden. Diese Art der Forschung gab es im Kontext Klimawandel bereits, sie fehlt bislang aber für CE. Durch Austausch mit internationalen Forschergruppen wurde klar, dass eine die wahrscheinlichste Implementierung von CE Maßnahmen aus einer Kombination der verschiedenen Technologien besteht. Daher wollen wir in diesem Projekt untersuchen wie das Erdsystem auf eine Kombination verschiedener CE Maßnahmen reagiert, und ob es möglich ist die Signale der einzelnen Methoden jeweils zuzuordnen. In diesem Zusammenhang werden wir ebenfalls untersuchen ob und wie die Effektivität der CE Maßnahmen vom Hintergrund-Klimazustand abhängt und ob z.B. der Zeitpunkt der Umsetzung von CE eine Rolle spielt. Darüber hinaus wollen wir robuste, regionale CE Muster untersuchen um ebenfalls auf die regionalen Auswirkungen von CE eingehen zu können. Das ist besonders wichtig, weil für die lokale Öffentlichkeit regionale Klimaextreme mehr Bedeutung haben als globale Mittelwerte. Diese Analysen werden ebenfalls den Findungsprozess der Metriken informieren. Zusätzlich wird die plötzliche Terminierung von CE Maßnahmen im Kontext der Geschwindigkeit des Terminations-Schocks untersucht. Schlussendlich basiert die gesamte Beurteilung von CE Maßnahmen auf Modellergebnissen, daher finden wir, dass ein wichtiger Beitrag für die CE Debatte eine Beurteilung der model-internen Unsicherheiten ist. Diese werden mit Anhang von Änderungen der Wahrscheinlichkeitsverteilung von Metriken quantifiziert, so können zum Beispiel aussagen über die Wahrscheinlichkeit einer Richtwert-Überschreitung der gegebenen Zukunftsszenarien getroffen werden. Die Ergebnisse diese Projekts erlauben eine umfassende Einschätzung der untersuchten CE Maßnahmen gegenüber Migration, unter Berücksichtigung von Unsicherheiten in Modellen, den Zukunftsszenarien und Metriken, welche im Laufe des Projekts iterative mit anderen Teilprojekten diskutiert werden.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Polare Fische und der globale Wandel: Wie beeinflussen multiple Umweltressoren den Stoffwechsel arktischer & antarktischer Fische?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Hydrobiologie und Fischereiwissenschaft.Ozeanerwärmung, -versauerung und die Umweltverschmutzung, nehmen zunehmend Einfluss auf die arktische und antarktische Umwelt. Antarktische, stenothermen Fische haben sich evolutionär an die dortigen stabilen Umweltbedingungen angepasst, welche z.B. genetische und funktionellen Veränderungen beinhalten. Diese könnten u.a. die Anpassungsmöglichkeiten antarktischer Fische gegenüber Umweltveränderungen beeinträchtigen. Vergleichsweise dazu leben arktische, gadoide Fische in einem Gebiet mir größeren Umweltschwankungen. In Anbetracht desen wird sich die Klimaveränderung wahrscheinlich unterschiedlich auf Arktische und Antarktische Fische auswirken.Das Herz-Kreislaufsystems stenothermer Fischarten ist prinzipiell nur geringfügig auf Umweltveränderungen zu reagieren. Hierbei stellt die Herzfunktion einen Schlüsselfaktor dar. Studien deuten des Weiteren auf negative und interagierende Einflüsse von Ozeanerwärmung- und versauerung auf Embryos und Larvalen polarer Fischarten hin. Die Exposition der Fische gegenüber mehreren, kombinierten Umweltstressoren kann zudem zu Verschiebungen im Energiehaushalt führen. Diese können eine verringerte Energieverfügbarkeit für andere, lebensnotwendige Funktionen zur Folge haben.Der Antrag befasst sich mit der Frage, wie sich die Umweltstressoren anthropogene Umweltverschmutzung, Klimaerwärmung und Ozeanversauerung auf den Energiestoffwechsel verschiedener Lebensstadien arktischer und antarktischer Fische auswirkt. Die Kernfragen lauten:Beeinträchtigt das Zusammenspiel multipler Stressoren den Schadstoffstoffwechsel polarer Fische? Verursachen multiple Stressoren eine Verschiebung im Energiehaushalt arktischer und antarktischer Fische? Wie beeinflussen Schadstoffe die aerobe und Herzfunktion der verschiedenen Entwicklungsstadien polarer Fische?Was für negative Folgen könnten aus ökologischer Sicht für arktische Gadoiden und antarktische Notothenioiden draus resultieren?Der Antrag soll ein grundsätzliches Verständnis für molekulare, mitochondriale, zellulare und Stoffwechselprozesse schaffen, welche der Anfälligkeit polarer Fische gegenüber Umweltstressoren zugrundeliegen. Als Maß für evolutionäre Anpassungsfähigkeit sollen die Akklimationskapazitäten der verschiedenen Lebensstadien polarer Fische untersucht werden.Für einen Breitengraden-Vergleich von Toleranzen gegenüber Umweltfaktoren konzentriert sich der Antrag auf ökologisch und biologisch vergleichbare stenotherme Arten. Somit wird eine Datengrundlage geschaffen, um die evolutionär verschiedenen aber gleichermaßen stenothermen arktische und antarktische Fische vergleichen zu können.Die in diesem Antrag eruierte physiologische Empflindlichkeit polarer Fische gegenüber Klimawandel sollen abschließend dazu dienen, die zukünftigen Risiken menschengemachter Umweltrisiken für diese Tiere abgeschätzen zu können. Schließlich wird das Projekt eine Grundlage für Management- und Schutzmaßnahmen polarer Ökosysteme gegenüber fortschreitendem globalen Wandel bilden.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Ausbreitung und genetischer Austausch zwischen Flechtenpopulationen in Patagonien und der Antarktischen Halbinsel (unter Berücksichtigung anthropogener Einflüsse)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Senckenbergische Naturforschende Gesellschaft, Forschungsinstitut und Naturmuseum Senckenberg.(1) Terrestrische Biota der Antarktis sind durch geografische Isolation und inselhafte Verteilung geprägt. Die isolierte Lage der Antarktis und die Beschränkung auf weit voneinander entfernte kleine Habitatflecken haben zu einem hohen Endemiten-Anteil und einer starken Regionalisierung der Fauna und Flora geführt. Genetische Differenzierung, lokale Anpassung und die Evolution kryptischer Arten sind die Folge. Die Biodiversitäts-Konvention (CBD) betrachtet genetische Diversität als einen Eckpfeiler biologischer Vielfalt und stellt sie damit in eine Reihe mit der Diversität von Arten und Ökosystemen. Durch Einschleppung ortsfremder Arten und Homogenisierung bislang getrennter Genpools bedroht der Mensch jedoch zunehmend diese Isolation und genetische Differenzierung vieler antarktischer Biota. (2) Obwohl Flechten als wichtigste Primärproduzenten antarktische terrestrische Lebensräume dominieren, fehlen zurzeit Daten zu ihrer genetischen Struktur und Diversität. Der Umfang inter- und intrakontinentalen Genflusses ist bisher völlig unbekannt. Es ist deswegen derzeit unmöglich, den aktuellen und zukünftigen menschlichen Einfluss auf antarktische Flechtenpopulationen auch nur annähernd abzuschätzen.(3) Wir schlagen vor, mittels molekulargenetischer Daten die populationsgenetische Struktur von sechs weit verbreiteten Flechtenarten mit unterschiedlichen Ausbreitungsstrategien zu untersuchen. Dabei soll die Nullhypothese überprüft werden, dass Flechtenpopulationen genetisch nicht differenziert sind. Zusätzlich wollen wir abschätzen, ob menschliche Aktivitäten zur Einschleppung ortsfremder Arten oder Genotypen und zur Homogenisierung von Genpools beitragen. Hierfür sollen Lokalitäten mit hohem und niedrigem menschlichen Einfluss verglichen werden. Das Projekt schafft damit unverzichtbare Grunddaten für die Entwicklung von Schutzstrategien in der Antarktis.
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Klima-Engineering über Land: Umfassende Evaluierung von Auswirkungen terrestrischer Carbon-Dioxide-Removal-Methoden auf das Erdsystem (CE-LAND+)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Potsdam-Institut für Klimafolgenforschung e.V..Methoden des terrestrischen Carbon Dioxide Removal (tCDR) wie Aufforstung und Biomasseplantagen werden zuweilen als effektive, 'grüne' und sichere Varianten des Klimaengineering (CE) verstanden wegen ihrer Möglichkeit, die natürliche CO2-Aufnahme durch die Biosphäre zu erhöhen, und ihrer denkbaren ökonomischen Tragfähigkeit. Erkenntnisse aus der ersten Phase des CE-LAND-Projekts legen indes nahe, dass tCDR aufgrund schwieriger erdsystemischer und ethischer Fragen ebenso kontrovers wie andere CE-Methoden ist. CO2-Budgetierungen und rein ökonomische Bewertungen sind daher um profunde Analysen der natürlichen Begrenzungen, der Auswirkungen auf das Erdsystem mit damit verbundenen Unsicherheiten, der Tradeoffs mit anderen Land- und Wassernutzungen und der weitreichenden ethischen Implikationen von tCDR-Maßnahmen zu ergänzen. Analysen hypothetischer Szenarien der ersten Projektphase zeigen, dass effektives tCDR die Umwidmung großer Flächen voraussetzt, womit schwierige Abwägungsprozesse mit anderen Landnutzungen verbunden wären. Darüber hinaus zeigt sich, dass signifikante Nebenwirkungen im Klimasystem (außer der bezweckten Senkung der Weltmitteltemperatur) und in terrestrischen biogeochemischen Kreisläufen aufträten. CE-LAND+ bietet eine tiefergehende quantitative, räumlich explizite Evaluierung der nicht-ökonomischen Kosten einer Biosphärentransformation für tCDR. Potentielle Tradeoffs und Impakts wie auch die systematische Untersuchung von Unsicherheiten in ihrer Abschätzung werden mit zwei Vegetationsmodellen, einem Erdsystemmodell und, neu im Projekt, dynamischen Biodiversitätsmodellen analysiert. Konkret wird CE-LAND+ bisher kaum bilanzierte Tradeoffs untersuchen: einerseits zwischen der Maximierung der Flächennutzung für tCDR bzw. Biodiversitätsschutz, andererseits zwischen der Maximierung der Süßwasserverfügbarkeit für tCDR bzw. Nahrungsmittelproduktion sowie Flussökosysteme. Auch werden die (in)direkten Auswirkungen veränderten Klimas und tCDR-bedingter Landnutzungsänderungen auf Wasserknappheit (mit diversen Metriken und unter Annahme verschiedener Varianten des Wassermanagements) und Biodiversität quantifiziert. Die Tradeoffs und Impakts werden im Kontext von neben der Bekämpfung des Klimawandels formulierten globalen Nachhaltigkeitszielen - Biodiversitätsschutz, Wasser- und Ernährungssicherheit interpretiert - was sonst nicht im Schwerpunktprogramm vermittelt wird. Ferner wird das Projekt zu besserem Verständnis und besserer Quantifizierung von Unsicherheiten von tCDR-Effekten unter zukünftigem Klima beitragen. Hierzu untersucht es modellstrukturbedingte Unterschiede, Wachstum und Mortalität von tCDR-Pflanzungen unter wärmeren und CO2-reicheren Bedingungen und Wechselwirkungen zwischen tCDR-bezogenen Landnutzungsaktivitäten und Klima. Schließlich wird CE-LAND+ in Kooperationen innerhalb des Schwerpunktprogramms und mit einer repräsentativen Auswahl von Szenarien zur Evaluierung tCDR-bedingter Tradeoffs aus umweltethischer Sicht beitragen.
Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Transport und Zusammensetzung der UTLS der Südhemisphäre (SOUTHTRAC)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Änderungen der Verteilung von Spurengasen wie Wasserdampf und Ozon in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflussen den Strahlungsantrieb und das Klima sowie die Oberflächentemperaturen und haben eine Schlüsselbedeutung für das Verständnis des Klimawandels. Auf Grund der hohen Sensitivität des atmosphärischen Strahlungsantriebs gegenüber Änderungen der Konzentrationen dieser Substanzen gerade in der kalten Tropopausenregion haben kleine Änderungen z.B. des Wasserdampfgehaltes der unteren Stratosphäre eine große Wirkung auf die Variabilität der Oberflächentemperatur. Überdies sind Prognosen des zukünftigen Wasserdampf- und Ozongehaltes des UTLS nach wie vor mit großen Unsicherheiten behaftet, was exakte Vorhersagen des Strahlungsantriebs vor dem Hintergrund des wieder zunehmenden stratosphärischen Ozons und der damit verbundenen Prozesse erschwert. Mehrere Studien haben gezeigt, dass Klima-Chemie-Modelle sogar unterschiedliche Vorzeichen des Strahlungsantriebes durch die Ozonzunahme zeigen, da gerade im Bereich der Tropopause große Unsicherheiten bezüglich der simulierten Zusammensetzung, insbesondere des Ozons und Wasserdampfs auftreten. Aufgrund des unterschiedlichen Wellenantriebs in beiden Hemisphären und auch aufgrund des stark unterschiedlichen Polarwirbel, werden große Unterschiede des Transports und der Zusammensetzung zwischen der UTLS der Nord- und der Südhemisphäre erwartet. Trotz der Bedeutung der globalen UTLS wurden bisher kaum Studien zu Transportprozessen und Zusammensetzung sowie der Dynamik der südlichen UTLS durchgeführt. Frühere Kampagnen hatten die antarktische Ozonzerstörung und Vortexprozesse oder die Tropen oder die troposphärische Zusammensetzung zum Ziel. Außerdem beeinflusst die Südhemisphäre im Winter die globale stratosphärische Zirkulation, da die Anden dann ein globales Maximum der Schwerewellenaktivität bilden. Die Ausbreitung dieser Wellen und ihr Einfluss auf die Zirkulation sind noch nicht vollständig verstanden. Deshalb schlagen wir eine HALO Kampagne vor um die UTLS der Südhemisphäre zu untersuchen. Spezifische Aspekte, die hierbei im Fokus stehen, sind: (1) Austauschprozesse an der südhemisphärischen Tropopause (2) Schwerewellen in der Südhemisphäre (3) Einfluss von Biomassenverbrennung auf die südhemisphärische UTLS (4) Einfluss des antarktischen Polarwirbels auf die UTLS
Das Projekt "Kooperation, Konkurrenz und Kohlenstoff: Ein eigenschaftsbasierter Modellansatz zum mikrobiellen Einfluss auf die natürliche Speicherung von gelöstem organischen Kohlenstoff im Ozean" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Das Reservoir an gelösten organischen Kohlenstoffverbindungen im Meer (engl. dissolved organic carbon, DOC) ist eines der größten aktiven Kohlenstoffreservoire an der Erdoberfläche, und beinhaltet eine ähnliche Menge an Kohlenstoff wie die gesamte Atmosphäre. DOC wird mikrobiell abgebaut und ist durch Gasaustausch an der Ozeanoberfläche direkt mit dem atmosphärischen CO2 verbunden. Diese enge Verbindung birgt hohes Potential für biologische Rückkopplungen in einem sich ändernden Klima. Biogeochemische Modellierung hilft, Zukunftsszenarien zu berechnen und auszuwerten, benötigt dazu aber ein mechanistisches Verständnis der biogeochemischen Stoffkreisläufe. Wissenschaftler haben in einem Appell gerade davor gewarnt, die Rolle der Mikroorganismen zu vernachlässigen, da dies die Fähigkeit der Modelle beeinträchtigt, verwertbare Aussagen zu Zukunftsszenarien zu treffen. Aktuelle Kohlenstoffkreislaufmodelle berücksichtigen normalerweise die komplexen mikrobiellen Interaktionen mit DOC nicht, was problematisch ist, da das ozeanische DOC Reservoir groß, aktiv und in direktem Zusammenhang mit dem globalen Klimasystem ist. Momentan wird DOC hauptsächlich durch vorher definierte Reaktivitätsklassen innerhalb des Kohlenstoffpools modelliert. Obwohl dieser Ansatz heutige DOC-Konzentrationen im Ozean simulieren kann, fehlt die Flexibilität, ändernde Umweltbedingungen angemessen zu berücksichtigen. Das hier beantragte Projekt hat deshalb zum Ziel, diejenigen mikrobiellen Eigenschaften zu identifizieren, die notwendig sind, um das räumliche und zeitliche Muster von DOC Konzentrationen mit einem biogeochemischen Modell zu reproduzieren. Dazu wird ein Ansatz gewählt, indem sich mikrobielle Diversität im Modell an variierende Umweltbedingungen selbst anpasst, ein sogenannter â€Ìself-assembling approachâ€Ì. Dieser soll hier zum ersten Mal auf heterotrophe (=DOC abbauende) mikrobielle Diversität angewendet werden. Konkrete Ziele beinhalten 1) theoretische Zusammenhänge von DOC und den Wechselwirkungen von Phytoplankton und heterotrophen Mikroorganismen in einer Fallstudie abzuleiten, 2) zu testen, ob bestimmte mikrobielle Eigenschaften und trade-offs die globalen DOC Konzentrationen in der Mischungsschicht im Ozean abbilden und 3) die Identifikation und Quantifizierung von DOC Quellen im Tiefenozean zusätzlich zu Partikeldissoziierung, die empirische Studien nahelegen. Um diese Ziele zu realisieren, beantrage ich hier ein Stipendium für 12 Monate Aufenthalt in Prof. Mick Follows Arbeitsgruppe am Massachusetts Institute of Technology, um mein zuvor entwickeltes DOC Modell an das dortige Darwin Modell zu koppeln, um den dort entwickelten Ansatz des â€Ìself-assemblingsâ€Ì auf die DOC abbauende Gemeinschaft anzuwenden. Der Mehrwert liegt dabei in der Generierung eines verbesserten Verständnisses der natürlichen Speicherung von marinem DOC auf globaler Ebene, sowie in der verbesserten Darstellung des marinen DOC Reservoirs in einem marinen Kohlenstoffmodell.
Das Projekt "Auswirkungen von bodennahem Ozon auf die Vegetation in Kombination mit Stickstoff und Komponenten des Klimawandels: eine Literaturstudie" wird/wurde gefördert durch: Umweltbundesamt. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Biodiversität.Troposphärisches Ozon (O3) gilt als der bedeutendste phytotoxische Luftschadstoff. Erhöhte O3-Konzentrationen können das Pflanzenwachstum, die Entwicklung und Produktivität sowie die Artenzusammensetzung und die biologische Vielfalt negativ beeinflussen. Im Rahmen des Übereinkommens über weiträumige, grenzüberschreitende Luftverunreinigungen wurden kritische Schwellenwerte (Critical Levels) für O3 zum Schutz der Vegetation für verschiedene Vegetationstypen abgeleitet und sie werden auf der Grundlage der vorliegenden wissenschaftlichen Erkenntnisse fortlaufend weiterentwickelt. Ziel ist es, das O3-Risiko für die Vegetation in der gegenwärtigen und zukünftigen Belastungssituation in Europa als Grundlage für Minderungsmaßnahmen in der europäischen Luftreinhaltepolitik abzuschätzen. Die Ableitung kritischer O3-Werte basiert auf langjährigen Untersuchungen zum Einfluss von O3 auf die Vegetation v.a. durch Experimente, bei denen Pflanzen unterschiedlichen O3-Konzentrationen ausgesetzt waren, meist unter ansonsten optimalen Wachstumsbedingungen. Es ist jedoch bekannt, dass die Auswirkungen von O3 unter Freilandbedingungen durch eine Reihe anderer Faktoren erheblich verändert werden können. Eine Bewertung der Auswirkungen von O3-Belastungen in einem zukünftigen Klima muss daher mögliche Wechselwirkungen insbesondere mit erhöhter Stickstoffdeposition und Faktoren des Klimawandels berücksichtigen. Die vorliegende Studie fasst das aktuelle Wissen darüber zusammen, wie Faktoren des Klimawandels wie Temperatur- und Trockenstress, N-Eintrag und erhöhte CO2-Konzentrationen O3-Effekte auf das Wachstum, den Ertrag und den Gaswechsel beeinflussen oder verändern.
Das Projekt "Understanding the Water-Energy-Food Nexus and its Implications for Governance" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Osnabrück, Institut für Umweltsystemforschung.The Sustainable Water Future Programme (SWFP - follow-up program of the Global Water System Project - GWSP), as a core project of Future Earth, in cooperation with the Universities of Osnabrück and Trier proposes an academy for early career researchers on the topic of 'Understanding the Water - Energy - Food (WEF) Nexus and its Implications for Governance'. The academy aims at building capacity in the next generation of researchers to analyse complex nexus issues and critically assess solutions in an interdisciplinary context. As a strong scientific basis is essential to guide decision-makers towards sustainable resource-use decisions in the WEF nexus, the academy will support the development of conceptual models and integrated tools which explain the flows of resources across sectors. It will support the development of a sound empirical knowledge base, foster comparative case study analyses and advance innovative governance frameworks. Early career scientists will work together with experienced experts and fellow researchers to prepare a proposal for DFG funding for their own projects on one of the academy themes:1. Understanding complex interdependencies in the nexus2. Governance of the nexus3. Innovations in the nexus4. Science-Policy Interface in the nexus.
Origin | Count |
---|---|
Bund | 38 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 38 |
License | Count |
---|---|
offen | 38 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 37 |
Resource type | Count |
---|---|
Keine | 30 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 34 |
Lebewesen & Lebensräume | 35 |
Luft | 33 |
Mensch & Umwelt | 38 |
Wasser | 30 |
Weitere | 38 |