Das Puumalavirus-Prognosemodell modelliert das Auftreten von humanen PUUV-Infektionen auf Basis der Daten von 2006–2021. Es umfasst 78 Kreise bundesweit und kann das zukünftige humane Infektionsrisiko anhand von Wetter- und Phänologie-Daten vorhersagen. Das Ausbruchsrisiko ist eine neu definierte binäre Größe, welche die jährlichen lokalen Ausbrüche vorhersagt. Die vorhergesagten Inzidenzwerte (Anzahl Infektionen / 100.000 Einwohnern) und Risikoklassen leiten sich aus dem Ausbruchsrisiko und historischen Inzidenzwerten ab.
Die Karte bildet den Bezirk Harburg im Maßstab 1: 25 000 ab. Diese Stadtplan-, Übersichts- und Planungskarte ist als mehrfarbige Normalausgabe mit Wohn-, Industrie, Verkehrs- und Grünflächen, sowie als Verwaltungsausgabe mit unaufdringlichem Hintergrund erhältlich. Die Bezirkskarte hat das Papierformat 100 x 70 cm.
Das Projekt "Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Das Projekt "DFG Trilateral collaboration Deutschland-Israel-Palestine: Nematodes as potential vectors for human pathogens" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Arbeitsgruppe Wirbeltierforschung durchgeführt. Outbreaks of foodborne illness linked to consumptions of fresh, or partially processed, agricultural products are a growing concern in industrialized and developing countries. The incidence of human pathogens on fresh fruits and vegetables is often related to the use of recycled wastewaster in surface irrigation as well as high amounts of animal manure in agricultural management practice. Thereby the soil inhabiting fauna plays an important role in the transport and dissemination of microorganisms. The focus of the proposed project is on nematodes, well known vectors for bacteria and viruses in soil. The major goals are to: (1) survey human pathogens in soil and on/in free-living and plant parasitic nematodes in agriculture field sites irrigated with recycled wastewater or fertilized with fresh animal manure in Israel and the Palestinian Authority, (2) assess the function of nematodes as vectors in transmitting bacteria from microbial hot spots to plants, and (3) localize bacteria on and/or within the nematode and identify bacterial factors required for survival in the nematode host. Understanding the mechanisms involved in dissemination of human pathogens by nematodes will enhance the ability to develop practical means to minimize contamination of fresh produce and increase safety in food production.
Das Projekt "A census of viruses through the drinking water cycle" wird vom Umweltbundesamt gefördert und von Charité - Universitätsmedizin Berlin, Campus Charité Mitte (CCM), Institut für Virologie durchgeführt. Waterbome viruses have a high but so far underestimated public health significance. In water monitoring and surveillance regulations, virus detection is until now not mandatory. This is reflected in the methodological repertoire available. To date, methods for detecting the various types of viruses in different types of waters (waste water, surface water, groundwater, drinking water) are insufficiently sensitive. Some of the most important waterborne viruses like noroviruses can only be detected by PCR methods. In the case of waterborne virus outbreaks, underlying circumstances and causes frequently cannot be clarified in the absence of reliable detection methodology. The same would apply to acts of biological crime or terrorism. It is thus of utmost importance to further develop methods for sensitive and reliable virus detection in different types of waters which are technically easy to accomplish in a short time, provide a sufficient concentration of a large range of viruses in a mall volume, have a high virus recovery rate, will not be too costly, and will deliver reproducible results. In this proposal methods for concentrating large volumes of water by which a large spectrum of viruses can be simultaneously detected in water samples will be developed in cooperation with individual project partners. After successful development and testing in the lab, the methods will be evaluated for its use in different waters and water treatment steps for quantitative and qualitative virus analysis.
Das Projekt "Multi-proxy tree-ring analysis of conifer trees disturbed by insect outbreaks" wird vom Umweltbundesamt gefördert und von University of British Columbia, Faculty of Forestry, Department of Forest Resources Management Vancouver durchgeführt. Insect outbreaks are a major disturbance influencing forest dynamics in many ecosystems and can affect forest productivity worldwide. Reconstruction of insect outbreak history is fundamental to forest management. While the action of cambium feeders on trees leads to the formation of scars, that of defoliators is observable via growth suppression in tree rings. The occurrence of past insect attacks can thus be inferred from such tree-ring signatures. However, it necessitates an accurate dating of events, with high temporal resolution, as well as their correct attribution to the right disturbance agent. Fire also leaves scars on trees that can occur on cross-sectional disks where insect scars are already present, thus making them difficult to distinguish. Furthermore, insect-elicited reductions in radial growth may not be clearly visible on samples, and the radial growth response to defoliation often bears a lag of one or more years. This project tackles these issues directly by proposing a multi-proxy approach aiming at improving tree-ring reconstructions of insect outbreaks. Tree rings will be investigated to study radial variations of tree-ring width, wood anatomy, wood density, and wood chemistry. While dendrochronologists have long relied on tree-ring width variations to track the signal induced by climate, geomorphic and ecological processes, they have scarcely exploited the potential of other proxies and rarely used them in combination. The most advanced studies that have embraced these possibilities are owed to dendroclimatologists. The core of this research therefore lies in the use of multiple wood traits to provide answers to the above mentioned dendroecological questions. Two conifer tree species from British Columbia and their respective pests are within the scope of this study: the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins), a cambium feeder, on lodgepole pine (Pinus contorta Douglas), and the western spruce budworm (WSBW, Choristoneura occidentalis Freeman), a defoliator, on Douglas-fir (Pseudotsuga menziesii Franco). It is hypothesized that insect outbreak disturbance in the form of bark beetle or defoliation events results in abrupt significant structural differences between the wood formed prior to and after the insect attack. Based on pioneering tree-ring research on insect outbreaks, there are great prospects that the variations of wood traits be proven useful for differentiating MPB scars from fire scars and for identifying WSBW defoliation events, possibly with higher temporal resolution. The study of multiple wood traits (proxies) will help gain an understanding of the influence of insect outbreak disturbance on wood formation and tree physiological processes, a prerequisite for improving the detection and dating of events in tree-ring series. (...)
Das Projekt "Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS)" wird vom Umweltbundesamt gefördert und von Plymouth Marine Laboratory Limited durchgeführt. Marine life makes a substantial contribution to the economy and society of Europe. VECTORS will elucidate the drivers, pressures and vectors that cause change in marine life, the mechanisms by which they do so, the impacts that they have on ecosystem structures and functioning, and on the economics of associated marine sectors and society. VECTORS will particularly focus on causes and consequences of invasive alien species, outbreak forming species, and changes in fish distribution and productivity. New and existing knowledge and insight will be synthesised and integrated to project changes in marine life, ecosystems and economies under future scenarios for adaptation and mitigation in the light of new technologies, fishing strategies and policy needs. VECTORS will evaluate current forms and mechanisms of marine governance in relation to the vectors of change. Based on its findings, VECTORS will provide solutions and tools for relevant stakeholders and policymakers, to be available for use during the lifetime of the project. The project will address a complex array of interests comprising areas of concern for marine life, biodiversity, sectoral interests, regional seas, and academic disciplines as well as the interests of stakeholders. VECTORS will ensure that the links and interactions between all these areas of interest are explored, explained, modelled and communicated effectively to the relevant stakeholders. The VECTORS consortium is extremely experienced and genuinely multidisciplinary. It includes a mixture of natural scientists with knowledge of socio-economic aspects, and social scientists (environmental economists, policy and governance analysts and environmental law specialists) with interests in natural system functioning. VECTORS is therefore fully equipped to deliver the integrated interdisciplinary research required to achieve its objectives with maximal impact in the arenas of science, policy, management and society.
Das Projekt "Ecological Effects of Energy Nurse Crops - Forest Restoration and Biomass Production" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Storms, droughts, and pest insect outbreaks regularily disturb forests, in particular those that are characterized by tree species that are not in accordance with site conditions. Ordinary restoration methods establishing juvenile target trees in open areas often face problems in terms of seedling survival owing to stress from frost, drought, sun, or pests. From an ecological point of view, delayed restoration success can result in increased nutrient elution and reduction of carbon stored in soils. To address this problem nurse crops comprising robust and fast growing tree species such as birch (Betula ssp.) or poplar (Populus ssp.) have been used to establish an overstory sheltering sensitive target tree species against weather extremes. This project aims to utilize forest biomass provided by nurse crops to support the production of renewable energy (Energy Nurse Crops, ENCs). However, exporting additional forest biomass affects the nutrient cycles and thus may undermine the principle of sustainability. Therefore, this project will investigate and evaluate the concept of ENCs and its consequences relative to ordinary restoration methods especially for forest ecosystems sensitve to windblow such as pure black spruce stands (Picea abies) stocking on periodically wet soils. Tree species such as birch or poplar are known to develop extensive root systems. Because ENCs reliably establish in open areas and because their roots can quickly penetrate soils, they may be able to retain much more nutrients on site than any target tree species could ever do when established under unfavourable growth conditions. Eventually the positive effects of nutrient retention and soil carbon fixation may outweigh the negative effects of nutrient export with biomass. To explore this question, field experiments quantifying nutrient elution, nutrient pools, carbon pools, biomass production, and root growth will be conducted in ENC stands of different age, site, and tree species. Introducing additional tree species such as birch or poplar may also affect forest ground vegetation composition and species abundance. A research approach addressing species diversity of forest ground vegetation will be considered in the future.
Das Projekt "The dynamics of North Atlantic warm conveyor belts and their impact on downstream wave propagation and European weather systems" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Atmosphäre und Klima durchgeführt. Warm conveyor belts (WCBs) are coherent airstreams that typically develop along cold fronts associated with extratropical cyclones. These airstreams originate in the moist subtropical marine boundary layer and ascend within 1-2 days to the upper troposphere whilst moving more than 2000 km towards the pole. They occur most frequently during winter in the western North Pacific and North Atlantic where they are responsible for the major part of precipitation. The key role of WCBs for the dynamics of the synoptic and large-scale atmospheric flow stems from their profound impact upon the tropospheric distribution of potential vorticity (PV). The coherent ascent of WCBs leads to the diabatic production of a positive PV anomaly in the lower troposphere and of a negative PV anomaly in upper-level ridges just below the tropopause. When interacting with the extratropical waveguide, these negative PV anomalies can exert a profound impact upon the downstream flow evolution. Hence a WCB can be the trigger for the amplification and breaking of an upper-level Rossby wave, which is particularly relevant in situations where Rossby wave breaking events act as precursors of high-impact weather systems (e.g., heavy precipitation in the western Mediterranean, Saharan dust storms, cold air outbreaks). Recent studies indicate that errors in medium-range numerical weather predictions might be related to the inaccurate representation of WCBs and their effect on upper-level PV. In order to advance the basic understanding of these complex, non-linear and highly important dynamical processes, this project will (i) investigate the parameters and processes that determine the intensity of a WCB, its associated PV evolution and downstream effects, (ii) assess the errors in global models' analyses and forecasts associated with the different stages of a WCB life cycle, (iii) quantify the climatological frequency of the triggering and intensification of upper-level Rossby waves by WCBs, and (iv) provide clear guidance for investigating the dynamics of WCBs within the framework of THORPEX field experiments. In three subprojects, complementary techniques will be applied in order to reach these objectives, including idealized simulations of moist baroclinic waves, real case sensitivity experiments, diagnostic investigations based upon (re-)analysis and forecast data, and a feature-based verification of WCBs in global models using independent observational datasets. In this way this project will contribute to an improved basic understanding of the dynamical effects of WCBs on the downstream evolution of upper-level Rossby waves and (high-impact) surface weather events.
Das Projekt "Hochauflösende Vulkanologie und Geochemie von MOR Segmenten an der 9 40'S Schmelzanomalie und dem Ascension hot spot" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Der Vulkanismus an mittelozeanischen Rücken ist von großer Bedeutung für die geochemische Entwicklung des Erdmantels. Das MARSÜD Gebiet des SPP 1144 ist für detaillierte Untersuchungen zu kleinräumigen Variationen von geochemischen und isotopengeochemischen Parametern besonders geeignet, da hier angereicherter Erdmantel (bei 9 Grad 40S) und ein vermuteter hot-spot bei Ascension Island neben verarmtem Erdmantel vorliegen. Die Ergebnisse von hoch-präzisen HFSE Bestimmungen und Isotopenmessungen (Sr, Nd, Hf) aus der ersten Projektphase (18 Monate) zeigen, dass bisherige geodynamische Modelle modifiziert werden müssen. Des weiteren wurde festgestellt, dass der submarine und der subaerische Vulkanismus von Ascension von unterschiedlichen Mantelquellen gespeist wurden, die nicht auf einen mantle plume zurückzuführen sind. In der zweiten Phase des Projektes sollen detaillierte vulkanologische und petrogenetische Untersuchungen an einzelnen Vulkanfeldern im Vordergrund stehen. Hierbei soll der Einfluß von Mantelheterogenitäten auf die Produkte einzelner Eruptionen untersucht und die Entstehung von Ascension Island geklärt werden. Des Weiteren zeigen unsere Daten, dass sich HFSE und W bei der Bildung von MORB Schmelzen anders verhalten als Experimente vorhergesagt haben. Weitere Analysen und Modellierungen sind erforderlich um diesen Widerspruch aufzuklären.