Das Projekt "Biogeochemistry and Climate Charge Research and Training Network (GREENCYCLES)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt.
Das Projekt "Nachhaltige Landwirtschaft und Bodenschutz - Fallstudien (SoCo)" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Sozioökonomie durchgeführt. Das übergeordnete Ziel des Soco-CS-Projektes ist es, detaillierte Informationen über die Nutzung des Bodens zu erhalten und zu analysieren welche Techniken in acht verschiedenen europäischen Regionen im physischen, sozio-ökonomischen, institutionellen und historischen Kontext zur Anwendung kommen. Für die Zwecke dieses Teilprojekts Fallstudien ist der Bereich innerhalb der einzelnen ausgewählten Fallstudien. Die Ziele für die einzelnen Fallstudien sind: (a) eine Beschreibung der aktuellen Situation in der Fallstudienregion in den Bereichen Bodenschutzproblemen und die Ermittlung der driving forces hinter ihnen. (b) die aktuelle landwirtschaftliche Praxis in den Fallstudienregionen, im Hinblick auf Bodenerosion, Boden-Verdichtung, Verlust an organischer Substanz, Kontamination, etc.). (c) Verbindungen aufdecken zwischen Bodenschutz und anderen Ziele des Umweltschutzes und der damit verbundenen Maßnahmen (Wasser, Biodiversität, Luftverschmutzung und Klimawandel, einschließlich der Fähigkeit der Böden zur Speicherung von Kohlendioxid). (d) eine Beschreibung der politischen Maßnahmen für den Bodenschutz. (e) Einblicke in die Faktoren, die das Verhalten der Landwirte und Gruppen von Landwirten im Hinblick auf die Annahme und die weitere Verwendung der Bodenschutzpraktiken beeinflussen. (f) einen Einblick in die Determinanten der politischen Entscheidungsfindung und Umsetzung der Maßnahmen der zuständigen Behörden und ihre Leistung im Hinblick auf die Erhaltung der Böden und die damit verbundenen Maßnahmen, einschließlich der Tätigkeiten im Zusammenhang mit der politischen Gestaltung, Überwachung und Durchsetzung. (g) Analyse der Leistungen, Kosten und Wirksamkeit der verschiedenen Bodenschutzmaßnahmen. Darüber hinaus gibt es zwei Ziele für die Integration von Soco-CS-Projekt als Ganzes: (h) Zusammenfassung und Vergleich der Ergebnisse der acht Fallstudien und Beispiele für eine erfolgreiche Identifizierung landwirtschaftlicher Methoden und Maßnahmen zur Erhaltung der Böden und die damit verbundenen umweltpolitischen Zielen. (i) eine Diskussion der Forschungsergebnisse mit relevanten Akteuren und politischen Entscheidungsträgern in drei Workshops. Auf Basis der Fallstudien sollte es möglich sein, daraus konkrete Schlussfolgerungen für die Landwirte, andere Interessengruppen und Akteure in der politischen Entscheidungsfindung und Umsetzung zu ziehen.
Das Projekt "Abgaben- und Subventionssysteme und ihre Wirkung auf das Wachstumspotential der EU" wird vom Umweltbundesamt gefördert und von Leibniz Zentrum für Europäische Wirtschaftsforschung GmbH, Forschungsbereich Umwelt- und Ressourcenökonomik, Umweltmanagement durchgeführt. Die ambitionierten Ziele der Europäischen Union bezüglich ihrer wirtschaftlichen Entwicklung sollen ohne Vernachlässigung der sozialen Dimension und auf der Basis einer nachhaltigen Entwicklung umgesetzt werden. Dabei setzen sich die wichtigsten ökonomischen Instrumente der Mitgliedsstaaten aus Abgaben- und Subventionssystemen zusammen. Der politische und wirtschaftliche Rahmen befindet sich derzeit im Spannungsfeld verschiedener Herausforderungen wie Umweltprobleme, Alterung, Globalisierung und internationaler Wettbewerb. Es war Ziel des Projektes, in fünf breitem Themenbereichen das Abgaben- und Subventionssystem zu untersuchen: Beschäftigung, Unternehmenssteuern und Steuerwettbewerb, Produktivitätswachstum und Konvergenz, Makroökonomische Politik unter der Währungsunion und schließlich Umweltpolitik und Klimawandel. Unter Mitarbeit von 7 europäischen Wirtschaftsforschungsinstituten erbrachte das Projekt eine große Anzahl wissenschaftlich origineller Erkenntnisse über das Zusammenspiel der Abgaben- und Subventionssysteme. Darüber hinaus kamen die Arbeiten zu Ergebnissen, die in den politischen Prozess der Gestaltung - insbesondere die Reformierung - der Abgaben- und Subventionssysteme Eingang fanden.
Das Projekt "A1: Prozessführung und Stabilisierung hochdynamischer Verbrennungsvorgänge in Brennkammern - A2: Modellbasierte Mehrgrößenregelung von Verbrennungsmotoren" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung durchgeführt. Die Bereitstellung von Energie spielt für den häuslichen Bedarf, für Prozesswärme und für den Transport von Menschen und Gütern eine wichtige Rolle. Voraussetzung dafür ist auf absehbare Zeit nach wie vor die Verfügbarkeit und vor allem die effektive technische Nutzung von fossilen Brennstoffen. Diese bestehen im Wesentlichen aus Kohlenwasserstoffen, die aus Kohle, Erdöl und Erdgas gewonnen werden und entsprechend der technischen Anwendung aufbereitet werden. Auch für alternative Konzepte wie z. B. die Brennstoffzelle, wird man den dort benötigten Wasserstoff zu großen Teilen zunächst aus fossilen Brennstoffen herstellen. Gerade für das Transportwesen erscheint die Verwendung flüssiger Kohlenwasserstoffe wegen ihrer großen Energiedichte unverzichtbar. Die Verbrennung von Kohlenwasserstoffen bringt jedoch eine Reihe bekannter Nachteile mit sich. Dies sind zum einen die bei den herkömmlichen Brennverfahren entstehenden Emissionen von Schadstoffen wie Stickoxiden (NOx) und Ruß, die erheblich zur städtischen und regionalen Luftverschmutzung beitragen; zum anderen sind es die Emissionen von CO2, das als Treibhausgas für den Anstieg der Temperatur in der Erdatmosphäre und damit für die Veränderung des globalen Klimas verantwortlich gemacht wird. Die Verringerung des Schadstoffausstoßes ist daher ein wichtiges Forschungsziel in diesen Bereichen. So konnten bei stationären Gasturbinen durch den vor einigen Jahren erfolgten Übergang von der diffusionskontrollierten Verbrennung zur vorgemischten Verbrennung die Schadstoffemissionen wesentlich reduziert werden, da durch die Homogenisierung Temperaturspitzen vermieden wurden. Es stellten sich jedoch unerwünschte selbsterregte thermo-akustische Instabilitäten ein. Auch bei Motoren werden auf breiter Front neue Brennverfahren entwickelt, die den Anforderungen nach niedrigeren Emissionen bei gleichzeitig hoher Effizienz genügen. Diese sind die als HCCI (Homogeneous Charge Compression Ignition) oder CAI (Controlled Auto-Ignition) bezeichneten Brennverfahren, die wie moderne Gasturbinen durch Homogenisierung und Abgasrückführung hohe Spitzentemperaturen vermeiden und damit die NOx- und Rußemissionen deutlich senken können. Auch hier stellen sich jedoch Verbrennungsinstabilitäten in Form von räumlich und zeitlich zufällig verteilten Selbstzündungen ein. Somit zeigt sich bei so unterschiedlichen technischen Anwendungen wie Gasturbinen und Motoren nahezu zeitgleich eine Abkehr von der mischungskontrollierten Hochtemperatur-Verbrennung und eine Hinwendung zur homogenisierten Verbrennung bei im Mittel niedrigeren Temperaturen. Dies führt jedoch in beiden Fällen zum Auftreten von Verbrennungsinstabilitäten. Da nicht erwartet werden kann, dass die genannten Instabilitäten durch verbrennungstechnische Maßnahmen allein behoben werden können, sollen sie durch Eingriffe in die Prozessführung kontrolliert werden. usw.
Das Projekt "B2: Untersuchungen zur Mischung in geschlossenen Brennräumen anhand holographischer Messmethoden - C1: Numerische Analyse von Brennkammerschwingungen anhand eines hybriden Fluidmechanik/Aeroakustik Verfahrens" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung durchgeführt. Die Bereitstellung von Energie spielt für den häuslichen Bedarf, für Prozesswärme und für den Transport von Menschen und Gütern eine wichtige Rolle. Voraussetzung dafür ist auf absehbare Zeit nach wie vor die Verfügbarkeit und vor allem die effektive technische Nutzung von fossilen Brennstoffen. Diese bestehen im Wesentlichen aus Kohlenwasserstoffen, die aus Kohle, Erdöl und Erdgas gewonnen werden und entsprechend der technischen Anwendung aufbereitet werden. Auch für alternative Konzepte wie z.B. die Brennstoffzelle, wird man den dort benötigten Wasserstoff zu großen Teilen zunächst aus fossilen Brennstoffen herstellen. Gerade für das Transportwesen erscheint die Verwendung flüssiger Kohlenwasserstoffe wegen ihrer großen Energiedichte unverzichtbar. Die Verbrennung von Kohlenwasserstoffen bringt jedoch eine Reihe bekannter Nachteile mit sich. Dies sind zum einen die bei den herkömmlichen Brennverfahren entstehenden Emissionen von Schadstoffen wie Stickoxiden (NOx) und Ruß, die erheblich zur städtischen und regionalen Luftverschmutzung beitragen; zum anderen sind es die Emissionen von CO2, das als Treibhausgas für den Anstieg der Temperatur in der Erdatmosphäre und damit für die Veränderung des globalen Klimas verantwortlich gemacht wird. Die Verringerung des Schadstoffausstoßes ist daher ein wichtiges Forschungsziel in diesen Bereichen. So konnten bei stationären Gasturbinen durch den vor einigen Jahren erfolgten Übergang von der diffusionskontrollierten Verbrennung zur vorgemischten Verbrennung die Schadstoffemissionen wesentlich reduziert werden, da durch die Homogenisierung Temperaturspitzen vermieden wurden. Es stellten sich jedoch unerwünschte selbsterregte thermo-akustische Instabilitäten ein. Auch bei Motoren werden auf breiter Front neue Brennverfahren entwickelt, die den Anforderungen nach niedrigeren Emissionen bei gleichzeitig hoher Effizienz genügen. Diese sind die als HCCI (Homogeneous Charge Compression Ignition) oder CAI (Controlled Auto-Ignition) bezeichneten Brennverfahren, die wie moderne Gasturbinen durch Homogenisierung und Abgasrückführung hohe Spitzentemperaturen vermeiden und damit die NOx- und Rußemissionen deutlich senken können. Auch hier stellen sich jedoch Verbrennungsinstabilitäten in Form von räumlich und zeitlich zufällig verteilten Selbstzündungen ein. Somit zeigt sich bei so unterschiedlichen technischen Anwendungen wie Gasturbinen und Motoren nahezu zeitgleich eine Abkehr von der mischungskontrollierten Hochtemperatur-Verbrennung und eine Hinwendung zur homogenisierten Verbrennung bei im Mittel niedrigeren Temperaturen. Dies führt jedoch in beiden Fällen zum Auftreten von Verbrennungsinstabilitäten. Da nicht erwartet werden kann, dass die genannten Instabilitäten durch verbrennungstechnische Maßnahmen allein behoben werden können, sollen sie durch Eingriffe in die Prozessführung kontrolliert werden. usw.
Das Projekt "Maßnahmen zur verursacherbezogenen Schadstoffreduzierung des zivilen Flugverkehrs" wird vom Umweltbundesamt gefördert und von Technischer Überwachungs-Verein Rheinland Sicherheit und Umweltschutz durchgeführt. Für Deutschland werden zunächst für das Basisjahr 1995 und den Prognosehorizont 2020 die Abgasemissionen des zivilen Flugverkehrs nach 2 Abgrenzungskriterien berechnet. Zur Reduzierung der Schadstoffbelastung werden Maßnahmen diskutiert und deren rechtliche Umsetzung gewürdigt. Die europaweite Einführung einer Kerosinsteuer und/oder Emissionsabgabe in 2 verschiedenen Ausprägungen und eines festgelegten Maßnahmebündels wird bewertet hinsichtlich der Veränderung von Verkehrsleistungen, Kraftstoffverbrauch und Emissionen für den Horizont 2020.
Das Projekt "Netzwerk von Referenzlaboratorien und verwandten Organisationen zum Monitoring und Biomonitoring aufkommender Umweltschadstoffe" wird vom Umweltbundesamt gefördert und von IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH durchgeführt. NORMAN co-ordination action will develop and implement a methodology within a network of reference laboratories and related organisations (including standardisation bodies) to enable and improve EU capabilities for monitoring emerging pollutants, thereby ensuring the production of data that are valid, comparable and fit for purpose across EU25. The project will align the activities of the network with the requirements of organisations / stakeholders in charge of risk assessment and management. It will organise, via workshops, the EU-wide exchange of information between monitoring experts, environmental agencies and standardisation and regulatory bodies. NORMAN will facilitate access to existing data / information from research programmes by developing a database of: - leading European experts, organisations and projects dealing with emerging pollutants; - geo-referenced monitoring data; - mass spectrometric information on provisionally identified and unknown substances. Particular effort will be made to enable the final user to interpret the data and judge their representativeness, quality and comparability. Moreover, protocols for validation, harmonisation and dissemination of chemical and biological monitoring methods (including sampling methodology) will be provided. These protocols will be developed into technical guidelines / reports (e.g. CEN TR). To test these protocols and the ability of the network to meet EU demands for monitoring emerging pollutants, three case studies will be undertaken, involving partners from a wide selection of Member States, including New Member States. This will enable benchmarking of the competencies and expertise and foster the transfer of knowledge and techniques. The final goal of the project is the implementation of a network operating after the end of the project. The organisation of the follow-up of the network will therefore be one of the main tasks of the project. Prime Contractor: Institut National de l'Environnement Industriel et des Risques, Scientific Direction, Verneuil en Halatte FR.
Das Projekt "Entwicklung eines inhärent sicheren, kostengünstigen und flexiblen Verfahrens zur Herstellung von Wasserstoffperoxidlösungen durch Direktsynthese mittels katalytisch beschichteter Membranen" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Im Rahmen des Projektes wurde eine Methode zur Herstellung katalytisch aktiver Rohrmembranen mit innen liegender aktiver Schicht auf der Basis keramischer Mikro- und Ultrafiltrationsmembranen sowie Palladium und optional Gold als Aktivkomponenten entwickelt. Die Membranen, die vor der Metallabscheidung alternativ noch mit Kohlenstoff modifiziert wurden, wurden als strukturierte Katalysatoren in einem Gas/Flüssig-Membrankontaktor für die Direktsynthese von Wasserstoffperoxid (H2O2) aus Wasserstoff und Sauerstoff eingesetzt, können prinzipiell aber auch für andere heterogen katalysierte Flüssigphasenreaktionen Verwendung finden. Sie wurden hinsichtlich ihrer Zusammensetzung, Struktur, Katalysatorverteilung und -Partikelgröße umfassend charakterisiert. Weiterhin wurde eine Methode zur automatisierten Detektion von H2O2 im Konzentrationsbereich von 0.004-4.5 Gew.-Prozent basierend auf der Fliess-Injektions-Analyse entwickelt, die ebenfalls auch für andere Anwendungen eingesetzt werden kann. Die Aktivität und Selektivität der katalytischen Membranen wurde in Laborexperimenten zur Direktsynthese von H2O2 ermittelt. Hierzu wurde ein Kreislaufverfahren im Labormaßstab realisiert, das die Vorteile des Membrankontaktors bezüglich eines kompakten Verfahrensaufbaus sowie einer erhöhten Verfahrenssicherheit, die auf der Trennung der Reaktanden durch die Membran beruht, nutzt. Zur detaillierten Simulation der gekoppelten Reaktions- und Stofftransportvorgänge im Membrankontaktor wurde ein Matlab-Programm entwickelt. Die Membranpräparation wurde erfolgreich auf technisch relevante Membrangeometrien übertragen (Mehrkanalelemente bis 0,5 m Länge). Die Demonstration der H2O2-Direktsynthese blieb aber wegen Schwierigkeiten mit der Eindichtung der Mehrkanalelemente noch auf den Labormaßstab beschränkt. Probleme bestehen auch noch dahingehend, höhere Konzentrationen an H2O2 im Bereich einiger Gew.-Prozent im Kreislaufbetrieb zu erreichen. Dies ist möglicherweise auf eine unbefriedigende Passivierung der Apparatur oder auf die Desaktivierung des Katalysators zurückzuführen. Zudem liegen für eine aussagekräftige techno-ökonomische Bewertung des Verfahrens noch zuwenig experimentelle Daten vor.
Das Projekt "Energiemanagement für Supercap-Brennstoffzellenfahrzeuge" wird vom Umweltbundesamt gefördert und von Technische Hochschule Aachen, Lehrstuhl und Institut für Stromrichtertechnik und Elektrische Antriebe durchgeführt. Eine Brennstoffzelle als Primärenergiequelle mit einem Doppelschichtkondensator (Supercap) als Zwischenspeicher zu kombinieren ist ein vielversprechender Ansatz für zukünftige Elektrofahrzeuge. In Kooperation mit einem Fahrzeughersteller wurden verschiedene Strategien für ein Energiemanagement für die Kombination einer Brennstoffzelle mit einem Doppelschichtkondensatormodul entworfen und verglichen. Basierend auf der aktuellen Geschwindigkeit und Beschleunigung werden verschiedene Fahrzeugzustände bezüglich kinetischer Energie und Leistungsbedarf unterschieden. In Abhängigkeit von der verfügbaren Leistung von Supercaps und Brennstoffzelle wird eine optimale Leistungsaufteilung zwischen den beiden Energiequellen ermittelt. In Bremsphasen wird durch Rekuperation Energie zurückgewonnen und in den Supercaps gespeichert. Wenn die Supercaps vollgeladen sind oder ihre maximale Ladeleistung erreicht haben, übernehmen mechanische Bremsen die übrige Ladeleistung. Da diese Situation zu einem Energieverlust führt, sollte sie möglichst vermieden werden. Um immer die notwendige Beschleunigungsleistung und gleichzeitig auch ein Maximum an Rekuperation zu garantieren, wird der Ladezustand der Supercaps kontinuierlich und dynamisch an die kinetische Energie des Fahrzeugs angepasst. Verschiedene Strategien wurden in Matlab/Simulink mit einem Stateflow-Chart zur Abbildung der Zustände implementiert. Die verfügbare Supercapleistung wird mit Hilfe eines impedanzbasierten Modells für Supercaps berechnet. Mit diesen Strategiemodellen können die Leistungsfähigkeit der verschiedenen Strategien verglichen und die Einflüsse von Parametern untersucht werden. Ziel eines Energiemanagements ist es, den Wasserstoffverbrauch zu minimieren und die notwendige Leistung zu jeder Zeit sicherzustellen. Bei der Bewertung der Strategien wird der Wasserstoffverbrauch, die verlorene Bremsenergie und eine mögliche Geschwindigkeitsreduzierung verglichen. Mit einer optimalen Strategie können bis zu 23 Prozent Wasserstoff während eines definierten Fahrprofils gespart werden.
Das Projekt "Zelluläre Klima-Adaptionen in alpinen und polaren Pflanzen" wird vom Umweltbundesamt gefördert und von Universität Innsbruck, Institut für Botanik, Abteilung für Physiologie und Zellphysiologie Alpiner Pflanzen durchgeführt. Die Pflanzen der Hochgebirge und der polaren Zonen müssend im Vergleich zu Pflanzen gemäßigter Bereiche mit drei besonderen Anforderungen fertig werden: kurze Vegetationszeit, Kälte, auch im Sommer möglich, und hoher Sonneneinstrahlung. Die Anpassungsstrategien, die ein Überleben in Hochgebirge und Arktis möglich machen, sind nur z.T. bekannt. Von seiten der Ökologie und Ökophysiologie wurden etliche solcher Strategien beschrieben, allerdings meist nur auf der Ebene der Pflanze oder eines Organs. Erst in jüngerer Zeit gibt es einige Untersuchungen, die die Adaptionen des Stoffwechsels verstehen wollen. Die Anpassung eines Stoffwechsels an ungünstige Bedingungen ist aber auch ein Ausdruck des Zusammenspiels von Zellorganellen und Membranen. Bislang ist nur von seiten des Antragstellers eine erste Beschreibung der Ultrastruktur alpiner Pflanzen mit Anbindung an den Stoffwechsel und Einbeziehung der Standortbedingungen erfolgt. Hier zeigte sich, daß mit Methoden der modernen Zellbiologie ein enormer Wissenszuwachs erhalten werden kann. So wurden vom Antragsteller in elektronenmikroskopischen Untersuchungen festgestellt, daß bei Kälte und Starklicht die Chloroplasten vieler alpiner und polarer Pflanzen besondere Strukturen zeigen ('Protrusionen), die einige physiologische Anpassungen erklärbar machen können. Die dem Auftreten dieser dynamischen Strukturen zugrunde liegenden Vorgänge in der Zelle können am besten mit modernen zellbiologischen Verfahren, wie sie etwa für Cytoskelett-Untersuchungen üblich sind, beschrieben werden. Daher sollen mit Hilfe eines confokalen Laser-Scanning-Mikroskopes (CLSM) unter Verwendung des 'green fluorescent protein (GFP) sowie fluoreszenz-markierter Antikörpern oder Cytoskelett-Inhibitoren die Bildungsmechanismen, Stabilität und 3-D Struktur dieser Protrusionen untersucht werden. Grundlage ist hierzu die vorherige Erfassung des Standortklimas der Pflanzen und ihrer Photosyntheseaktivität, um die Faktoren zu kennen, die die Zelle veranlassen, die Chloroplasten umzubilden. Voruntersuchungen haben auch ergeben, daß bei Hochgebirgspflanzen eine mögliche Kooperation von Plastiden, Mitochondrien und Microbodies überlebenswichtig sein kann. Diese dynamische Organell-Kooperation soll ebenfalls untersucht werden. Alle Arbeiten werden mit Wildpflanzen aus geeigneten hochalpinen und polaren Wuchsorten gemacht und die zellbiologischen Beobachtungen müssen über die Ökophysiologie dieser Pflanzen interpretiert werden.
Origin | Count |
---|---|
Bund | 14 |
Type | Count |
---|---|
Förderprogramm | 14 |
License | Count |
---|---|
open | 14 |
Language | Count |
---|---|
Deutsch | 14 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 7 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 12 |
Lebewesen & Lebensräume | 13 |
Luft | 10 |
Mensch & Umwelt | 14 |
Wasser | 12 |
Weitere | 14 |