API src

Found 383 results.

Related terms

Klimawandel auf globaler, nationaler, regionaler sowie lokaler Ebene Klimawandel Grundlagen Klimawandel auf globaler Ebene Klimawandel auf regionaler und lokaler Ebene Globale Klimamodelle Klimaszenarien

Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024

Nasse Deposition saurer und säurebildender Regeninhaltsstoffe

Nasse Deposition saurer und säurebildender Regeninhaltsstoffe An den Stationen des UBA-Luftmessnetzes wurden von 1982 bis 2022 eine Abnahme saurer und säurebildender Regeninhaltsstoffe sowie eine geänderte Zusammensetzung des Niederschlags beobachtet. Die stärksten Abnahmen zeigten die Säurekonzentration (Oxonium-Ion) und das schwefelhaltige Sulfat. Die stickstoffhaltigen Ionen Nitrat und Ammonium wiesen deutlich geringere Rückgänge auf. Erfassung der nassen Deposition Das Luftmessnetz des Umweltbundesamtes bestimmt die nasse ⁠ Deposition ⁠, also die mit dem nassen Niederschlag (Regen, Schnee) eingetragenen Stoffmengen (Messung mit wet-only-Probenahme). Sie ist kleiner als die Gesamtdeposition, die Ablagerungen von Gasen und Partikeln auf Oberflächen einschließt. Die Langzeitmessungen haben gezeigt, dass sich die Konzentrationen und nassen Depositionen einer Reihe von Ionen im Niederschlag zwischen 1982 und 2022 zum Teil deutlich vermindert haben. Anstieg der pH-Werte Die pH-Werte im Niederschlag an den Stationen Westerland, Waldhof und Schauinsland zeigen im Untersuchungszeitraum einen Anstieg von 4,1 bis 4,6 auf 5,3 – 5,9 (siehe Abb. „Entwicklung des pH-Wertes im Niederschlag an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“). Ein Anstieg der pH-Werte entspricht einem Rückgang der Konzentrationen von Oxonium-Ionen (H 3 O + ). Der Regen ist heute also deutlich weniger sauer als zu Beginn der 1980er Jahre. Im kürzeren Beobachtungszeitraum seit 1993 ist auch für die Stationen Neuglobsow und Schmücke eine Zunahme der pH-Werte festzustellen. Damit befinden sich die heutigen pH-Werte im Bereich der natürlichen, ohne menschliche Beeinflussung in Mitteleuropa zu erwartenden Werte. Abnahme des Ionengehalts Parallel zum Anstieg der pH-Werte hat der Gesamtgehalt an Ionen und damit die elektrische Leitfähigkeit im Niederschlag zwischen 1982 und 2022 an den Stationen Waldhof und Schauinsland deutlich abgenommen (siehe Abb. „Entwicklung der Leitfähigkeit im Niederschlag an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“). In Westerland, wo der Gesamtgehalt an Ionen im Niederschlag weitgehend von Seesalz bestimmt wird, wurde eine schwächere relative Abnahme beobachtet. Für die Stationen Zingst, Neuglobsow und Schmücke ist zwischen 1993 und 2022 ebenfalls ein Rückgang erkennbar. Änderung der Ionenverteilung Die Abnahme des Gesamtgehaltes an Ionen im Regen während der letzten vier Jahrzehnte ist mit einer Änderung der relativen Ionenverteilung verbunden. Ein Vergleich zeigt, dass an den Stationen Waldhof und Schauinsland im Jahre 2022 geringere prozentuale Anteile an Oxonium-Ionen (H 3 O + ) und schwefelhaltigen Sulfationen (SO 4 2– ) als in den 1980er Jahren gemessen wurden. Die Anteile der stickstoffhaltigen Ionen Nitrat (NO 3 – ) und Ammonium (NH 4 + ) sind hingegen höher, obwohl deren Konzentrationen absolut ebenfalls abgenommen haben. Die niedrigeren Gesamt-Ionenkonzentrationen und die Verschiebung der prozentualen Ionenanteile sind im Wesentlichen auf die stärkere Verminderung der Emissionen von Schwefeldioxid (SO 2 ) gegenüber Stickoxiden (NO x ) und Ammoniak (NH 3 ) zurückzuführen. Die Konzentrationen von H 3 O + und SO 4 2– haben mit rund 90 % beziehungsweise 80 % (bezogen auf die letzten fünf Jahre) im Untersuchungszeitraum zwischen 1982 und 2022 am stärksten abgenommen. Der Rückgang der Konzentrationen betrug bei NO 3 – und NH 4 + etwa 60 % beziehungsweise 40 % % (bezogen auf die letzten fünf Jahre). In den Abbildungen „Entwicklung der Ionenkonzentrationen an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“ und „Entwicklung der nassen ⁠ Deposition ⁠ an den Messstationen des UBA-Luftmessnetzes“ sind die auf das Jahr 1982 normierten Konzentrationen und Depositionen der Ionen als mit der Regenmenge gewichtete Mittel über die drei Stationen Westerland, Waldhof und Schauinsland zwischen 1982 und 2022 dargestellt. Entwicklung der Ionenkonzentrationen im Niederschlag (normiert auf 1982) an den Messstationen ... Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der nassen Deposition (normiert auf 1982) an den Messstationen des UBA-Luftmessnetzes Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Diagramm als Excel mit Daten

Umweltprobenbank Nr. 13001: pH-Wert (Calciumchlorid) / Schwebstoffe / Koblenz (km 590,3)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Koblenz (km 590,3) Mittelrhein oberhalb der Moselmündung in Koblenz am Deutschen Eck

Umweltprobenbank Nr. 13003: pH-Wert (Calciumchlorid) / Schwebstoffe / Prossen (km 13)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Prossen (km 13) Erste Probenahmefläche der Elbe beim Eintritt nach Deutschland

Umweltprobenbank Nr. 12995: pH-Wert (Calciumchlorid) / Schwebstoffe / Bimmen (km 865)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Bimmen (km 865) An der deutsch-holländischen Grenze

Umweltprobenbank Nr. 13008: pH-Wert (Calciumchlorid) / Schwebstoffe / Weil (km 174)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Weil (km 174) Probenahmefläche unmittelbar unterhalb der Baseler Chemieindustrie

Umweltprobenbank Nr. 12999: pH-Wert (Calciumchlorid) / Schwebstoffe / Jochenstein (km 2210)

Anzahl der Proben: 12 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Jochenstein (km 2210) Letzte Probenahmefläche der Donau vor der Grenze zu Österreich

Umweltprobenbank Nr. 12997: pH-Wert (Calciumchlorid) / Schwebstoffe / Cumlosen (km 470)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Cumlosen (km 470) Nördlichste Probenahmefläche in der Mittelelbe

Umweltprobenbank Nr. 12996: pH-Wert (Calciumchlorid) / Schwebstoffe / Blankenese (km 634)

Anzahl der Proben: 16 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Blankenese (km 634) Probenahmefläche oberhalb der Elb-Mündung in die Deutsche Bucht

Umweltprobenbank Nr. 13005: pH-Wert (Calciumchlorid) / Schwebstoffe / Saar, Staustufe Güdingen

Anzahl der Proben: 15 Gemessener Parameter: Der pH-Wert in einer Suspension aus Probenmaterial und einer verdünnten Calciumchlorid-Lösung ist ein Maß für die potentielle Acidität (Säuregrad). Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Saar, Staustufe Güdingen Die Saar beim Eintritt in den Saarländischen Verdichtungsraum

1 2 3 4 537 38 39