Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Grundlage des numerischen Seegangsvorhersagesystems im Deutschen Wetterdienst (DWD) ist ein spektrales Seegangsmodell der 3.Generation (3G-WAveModel). Spektrale Modelle beschreiben den Zustand des Seegangs über das sogenannte Frequenz-Richtungs-Seegangsspektrum – das ist die 2-dimensionale Verteilung der Wellenenergie nach Wellenfrequenz (bzw Wellenperiode oder Wellenzahl) und Ausbreitungsrichtung. In der gegenwärtigen Version wird eine Auflösung von 36 Richtungen und 30 Frequenzen (Wellenperioden zwischen 1.5 und 24 Sekunden) verwendet. Im numerischen Modell wird die zeitliche Entwicklung des Seegangsspektrums an einer Vielzahl von Punkten eines über die Meeresoberfläche gespannten Gitters berechnet. Die Wellenenergie ändert sich durch die folgenden physikalischen Prozesse: • Wellenwachstum durch den abwärts gerichteten Impulsfluss aus dem Windfeld • Wellenkinematik (Advektion, Refraktion) • Umverteilung der Energie zwischen den Wellenzahlen durch nichtlineare Wechselwirkungen • Dissipation (interne Reibung und Wellenbrechen) Ähnlich wie die Kette der Atmosphärenmodelle (ICON, ICON-EU und ICON-D2) ist das Seegangsvorhersagesystem in verschiedene Vorhersagegebiete gegliedert: Das globale Modell GWAM, das Europamodell EWAM und das hoch auflösende Küstenmodell CWAM. Der Modellseegang wird durch analysierte und vorhergesagte 10m-Winde der Atmosphärenmodelle angetrieben.
Das Projekt "Teilprojekt 1, (Modul B)" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Institut AWI - Forschungsstelle Potsdam durchgeführt. Im Projekt FAST-O3 wird ein großes Defizit bisher existierender genereller Zirkulationsmodelle mit gekoppeltem Ozean (AOGCMs), wie sie für die Vorhersagen der IPCC-Studien oder zeitaufwändige Ensemble-Läufe genutzt werden, behoben: Aus Rechenzeitgründen enthalten diese Modelle keine interaktive Ozonschicht und sind nicht in der Lage, das antarktische Ozonloch und dessen Rückkopplung auf das Klima zu simulieren. Wir werden ein semi-empirisches, sehr schnelles stratosphärisches Chemie- und Transportschema entwickeln, welches es erlauben wird, eine interaktive Ozonschicht in existierende AOGCMs einzubinden. Dies wird zu einer erheblichen Verbesserung des Vorhersage-Skills des Gesamtsystems führen, da Prozesse in der Ozonschicht bedeutende Rückkopplungseffekte auf das gesamte Klimasystem haben. Ein bereits vorhandener und am AWI entwickelter Prototyp namens SWIFT, der bereits für polare Regionen geeignet ist, wird für extrapolare Regionen und für den Einsatz als Modul in einem generellen Zirkulationsmodell oder die Kopplung zu so einem Modell erweitert und weiterentwickelt. Dies umfasst: 1. Weiterentwicklung des Modells und Einbau globaler Ozonchemie, 2. Einbau eines schnellen Advektionsschemas auf Basis des ATLAS-Modells, 3. Kopplung zum EMAC-Modell und Ensemble-Läufe, 4. Validation gegen volle Chemie-Läufe, 5. Einbindung in das MiKlip Modellsystem.
Das Projekt "Zooplankton: Zooplankton-Analyse und -Prognose II - 1. Advektion der 'Helgoland Reede' Proben (Prof.Dr. Backhaus) 2. Neuronale Netze in der Plankton-Prognose (Prof.Dr. Page)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Informatik, Arbeitsbereich Angewandte und Sozialorientierte Informatik durchgeführt. Im Rahmen des Verbundvorhabens 'Zooplankton-Analyse und Prognose' im Foerderprogramm fuer die Meeresforschung sollen drei Teilprojekte durchgefuehrt werden. Das Teilprojekt 'Neuronale Netze in der Plankton-Prognose' am Fachbereich Informatik hat das Ziel, anhand der vorliegenden umfangreichen Datensaetze aus langjaehrigen Planktonmessungen Untersuchungen ueber die Prognosefaehigkeit von Neuronalen Netzen im Vergleich zu konventionellen Ansaetzen (z.B. aus der Statistik) in dem speziellen oekologischen Anwendungsbereich der Plankton-Entwicklung durchzufuehren und ein operationales Softwaresystem auf der Basis von Neuronalen Netzen fuer die Plankton-Prognose zu entwickeln.
Das Projekt "Influence of mixing processes on stratospheric polar ozone depletion" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Institut AWI - Forschungsstelle Potsdam durchgeführt. Arctic ozone observations during recent years have shown that under certain conditions chemical reactions can destroy large amounts of ozone inside the wintertime Arctic polar vortex. The ozone depleted air masses are then transported to middle northern latitudes and significantly influence the total column amount of ozone over Europe. Accurate quantification of the chemically induced contribution to observed changes in the ozone amounts requires precise evaluation of dynamical activity. Several approaches have been developed in order to provide a quantitative estimate of the chemical ozone loss. Most approaches assume that mixing processes between the stratospheric Arctic and mid-latitude regions are negligible. The main objectives of this proposal is to investigate the mixing processes between the stratospheric mid-latitude and Arctic regions in order to provide an estimate on a multi-annual basis of the influence of these processes on the Arctic ozone depletion. The work will be based on the use of a high resolution chemical transport model that will be installed at the host Institution. It will involve the implementation of several chemical tracers into the model, in order to investigate the irreversible mixing of mid-latitude polar air into the Arctic polar stratosphere. The proposed work will allow AWI to provide a better evaluation of the Arctic ozone depletion on a multi-annual basis. It will also provide a test for other methods used in the quantification of Arctic chemical loss and assumed to be less sensitive then the 'vortex average' technique to mixing processes. Since Arctic chemical ozone loss has an influence on ozone amounts in the mid-latitude region, a better understanding of the overall stratospheric ozone budget will be obtained. Furthermore, the proposed work will enhance the modelling capacity of AWI, since high resolution transport models can be used to study various mesoscale phenomena. The advection scheme of the MIMOSA-CHIM model can be run on a higher 0.3 x0.3 horizontal resolution, providing PV maps which resolve small scale features such as polar filaments or mid-latitude intrusion in the polar vortex.
Das Projekt "Evaporation from heterogeneous surfaces at the field-plot scale: effect of lateral heat and water fluxes in soil and atmosphere" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Wet patches in agricultural fields may exist due to local variations in soil structure (compacted wheel tracks) or due to local irrigation (drip irrigation). Commonly used approaches to estimate evaporation assume that the lateral extent of the evaporating surface is large so that the lateral advection of heat and vapor in the air stream and in the soil can be neglected. For the scales of patches that are considered in this project, we postulate that lateral heat and mass fluxes in both the soil and the air may influence the evaporation rate from wet patches. In order to investigate these effects, we will carry out experiments at a field plot under outdoor conditions in which we will monitor the surface temperature of wet patches and the evaporation rate of micro-lysimeters with and without patches and which are or are not thermally insulated from the surrounding soil. The experiments will be accompanied by simulation studies in which lateral heat and water fluxes in both the soil and the air flow will be considered. To support other subprojects, infiltration, evaporation and salt tracer experiments will be carried out in an artificially constructed heterogeneous soil tank.
Das Projekt "Predictability of local Weather - C4: Coupling of planetary-scale Rossby wave trains to local extremes in heat waves over Europe" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. This project aims at improving the basic understanding of heat waves over Europe. Such heat waves have a significant impact on society as well as on natural ecosystems. They can be expected to become more severe in future decades owing to the projected global warming. The strength and duration of a heat wave is hard to predict with state-of-the-art weather forecast systems, presumably because of the interaction between multiple scales and processes involved. This project focuses on the downscale coupling between the planetary-scale flow in the upper troposphere and synoptic and mesoscale processes which eventually lead to local hot weather over a prolonged period. It is hypothesized that upper-tropospheric quasi-stationary Rossby wave packets play an important role, but that a true heat wave requires further processes acting on smaller scales. An important goal is to find out which of these scales and processes limit the predictability of heat waves. The statistics of past heat waves will be investigated and characterized using reanalysis data. Based on this work, individual cases of heat waves will be selected and studied in detail. Tools will be developed and applied in order to study the upper tropospheric waveguide and associated wave trains with significant ridging over a localized area for an extended period. The main idea here is to focus on regional wave packets rather than global-scale waves; correspondingly, this project goes beyond the traditional Fourier analysis and uses wavelet analysis instead. In addition, the upper tropospheric Rossby waveguide will be analyzed using established ideas from linear wave theory, but generalizing these ideas to zonally non-uniform references states. This will allow one to evaluate a previously suggested 'quasi-resonance hypothesis' in a more focused and, arguably, more relevant framework. This set of diagnostic tools will be complemented by another set of tools that will quantify the relevant smaller-scale processes like warm air advection, subsidence, irradiation and cloudiness/rainfall as well as soil moisture. One particular focus will be on the evolution of the heat that builds up in the deep boundary layer during several diurnal cycles. Here, we will distinguish between periods with and without synoptic-scale warm air advection. Related to the strength of the boundary layer inversion and to the moisture distribution, the role of cloudiness and shallow thunderstorm lows in augmenting/reducing the heat will be studied. This will be done in case studies using atmospheric reanalyses, surface and upper-air data as well as assessments of radiation budget terms from satellites. This project will also investigate the predictability of heat waves based on ensembles from atmospheric reforecast data sets; this activity will be started during phase 1, but it will become more dominant during later phases, when the diagnostic methods developed during phase 1 have reached a mature stage.
Das Projekt "High Resolution Methods for Transport Simulation in Surface Water" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Bauingenieurwesen, Fachgebiet Wasserwirtschaft und Hydrosystemmodellierung durchgeführt. This project is to develop new and improve classical high resolution schemes for the transport simulation in surface water. The terms of advection, diffusion and reaction are solved by coupling the shallow water equations (SWE). Among which, the advection is hard to handle because it is related to the vecocity. These difficulties will increase on unstructured grids in term of inducing numerical diffusion or oscillations. TVD schemes are investigated to overcome these numerical problems. The requirements for flux limiter functions preserving TVD are derived based on a 1-d non-uniform grid, and a new TVD region is determined to fit arbitrary 1-d grids. Some second order TVD schemes called improved TVD schemes are developed, such as modified Van Leer scheme, modified Van Albada scheme and modified SUPERBEE scheme. Then they are extended to 2-d untructured grids. However, the impovement of these TVD scheme on 2-d is still necessary and is underway. The flow fied is obtained by solving SWE in Riemann solver, The extendation of the high order Riemann solvers such as Roe approximate solver, HLL solver, HLLC solver on unstructured grids is studied too in this project.
Das Projekt "ORCAS- Ocean-Reef Coupling in the Andaman Sea Zeitraum" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Marine Tropenökologie (ZMT) GmbH durchgeführt. Korallenriffe sind hochproduktive benthische Ökosysteme in nährstoffarmen tropischen Meeren, die variablen Nährstoffeinträgen durch monsunbedingte Veränderungen in Niederschlägen, Durchmischung, Zirkulation und Auftrieb unterliegen. Eine Besonderheit der Andamanensee ist, dass ihre Korallenriffe internen Wellen mit enormen Amplituden ausgesetzt sind. Diese solitären Wellen (oder Solitonen) werden durch Gezeitenströme über die flachen Schwellen entlang des Andamanen-Nikobaren Inselbogens erzeugt. Sie breiten sich als Wellenpakete durch die tiefe Andamanensee entlang der Dichtesprungschicht zwischen dem warmen Oberflächen- und kalten Tiefenwasser nach Osten hin aus. Mit bis zu 80 m Amplitude und Phasengeschwindigkeiten von 2 m s-1 sind diese Wellen sehr energiereich. Wir postulieren, dass sie in seichterem Wasser auf den Boden auftreffen und als interne Brandung auslaufen. Die damit zusammenhängende Turbulenz und küstennormale Advektion ist ein bislang nicht untersuchter, potentiell wichtiger Faktor für den Nährstoff- und Larventransport. In dem vorliegenden Projektantrag soll untersucht werden, welche Rolle Solitonen für die Rekrutierung und Nährstoffversorgung der Similan Inseln spielen, die als Koralleninselgruppe auf dem äußeren Schelfrand liegen und 2004 durch den Tsunami stark in Mitleidenschaft gezogen worden sind. Wiederholte Messungen in verschiedenen Gezeitenperioden, Monsunsituationen und Jahren sollen Aufschluss geben über die für trophische Dynamik und Rekrutierung relevanten Zeitskalen. Da Solitonen in der Andamanensee und anderen Insel- und schwellengesäumten Meeren allgegenwärtig sind, sind sie ein mutmaßlich wichtiger Mechanismus für die Strukturierung benthischer Gemeinschaften in oligotrophen tropischen Meeren.