Das Institut für Abfall- und Kreislaufwirtschaft verfügt seit dem Jahr 2010 über eine 'Kleintechnische Vergärungsversuchsanlage' (KTVA) zur Durchführung langfristiger, anaerober Vergärungsversuche im kontinuierlichen Vergärungsverfahren. Hauptbestandteil ist ein Edelstahlreaktor (Vol. = 1.100 l), welcher beheizbar, durchmischbar und kontinuierlich beschickbar ist. Zusätzlich verfügt die KTVA über einen Vorlage- bzw. Hydrolysebehälter und einen Nachgärbehälter. Derzeit befindet sich die KTVA im Probebetrieb und wird zeitnah für orientierende Versuche genutzt. Mit Hilfe kontinuierlicher Messungen der Zusammensetzung des produzierten Biogases können die Vergärungsprozesse überwacht und optimiert werden.
Bis zum Jahr 2050 soll der Wärmebedarf in Gebäuden nahezu klimaneutral gestaltet sein. Dieses Ziel soll durch die Entwicklung eines Energieeffizienzassistenten in dem Projekt. GreenEnergyFirst' unterstützt werden. Bisher besteht ein wesentliches Hindernis für den Einsatz derartiger Assistenten in Gebäuden in der Vielfalt und Dimensionierung der verschiedenen Anlagenkombinationen, Wohnimmobilien und der dadurch bedingten aufwendigen Modellierung. Viessmann unterstützt das Projekt durch die Planung der Geräteausstattung sowie bei der Anpassung der Schnittstellen und der Datenerfassung. Viessmann liefert die Daten für die Analyse der Effizienzpotenziale der Gebäude- und Anlagentechnik und steuert eigenes Fachwissen bei. Hierzu wird der Istzustand der Anlage hinsichtlich Energiemanagement-Optionen unter Verwendung von Data-Mining und Expertenwissen genutzt. Weiterhin müssen die Schnittstellen der Smart Home Systeme erweitert und angepasst werden, um die geplanten Feedback Mechanismen zu ermöglichen. Für die konkrete Anlage müssen weiterhin Schnittstellen an den Geräten zum Energiemanagement angesprochen werden.
Bis zum Jahr 2050 soll der Wärmebedarf in Gebäuden nahezu klimaneutral gestaltet sein. Dieses Ziel soll durch die Entwicklung eines Energieeffizienzassistenten in dem Projekt 'GreenEnergyFirst' unterstützt werden. Bisher besteht ein wesentliches Hindernis für den Einsatz derartiger Assistenten in Gebäuden in der Vielfalt und Dimensionierung der verschiedenen Anlagenkombinationen und Wohngebäuden. Die medl GmbH soll dieses Hindernis durch die Definition von Gebäudeanforderungen beseitigen, welche die Voraussetzungen der Nutzung des Energieeffizienzassistenten berücksichtigen. Die medl ist als Generalunternehmen für den Bau und Betrieb der notwendigen Anlagentechnik bis hin zur Gebäudetechnik verantwortlich. Weiterhin wird medl Abrechnungsstrukturen entwickeln, die aus Sicht von Energieversorgungsunternehmen und Wohnungsbaugesellschaften das Energiemanagement auf Quartiersebene möglichst einfach darstellen und die Energieverbräuche mit möglichst geringem Aufwand mieterscharf visualisieren können. Für die durch medl durchgeführte Betriebsführung der Heizzentrale kommen für eine optimierte Fahrweise während der Projektphase die von der UNI DUE und dem EBZ entwickelte Strategien zum Einsatz.
In diesem Projekt des Forschungscampus Elektrische Netze (FEN) der Zukunft werden die elektrischen Komponenten und Systeme, die für den Aufbau und den Betrieb von Gleichspannungsnetzen erforderlich sind, weiterentwickelt. Gleichspannungsnetze versprechen eine Reihe von technologischen Vorteilen gegenüber herkömmlichen Drehspannungsnetzen, unter anderem eine höhere Effizienz und höhere Flexibilität bei der Übertragung und Verteilung elektrischer Energie. Im Forschungscampus Elektrische Netze der Zukunft werden in einem Projektverbund verschiedene Aspekte von Gleichspannungsnetzen mit einem Fokus auf die Mittelspannungsebene erforscht. Die Forschungsarbeiten aller vier Projekte des Projektverbundes werden an der RWTH Aachen in direkter Kooperation mit einer Gruppe von assoziierten Partnern durchgeführt. Die einzelnen Projekte sind in den Forschungscampus eingebunden und stehen untereinander in Beziehung. Die technologischen und wirtschaftlichen Entwicklungen der Leistungselektronik offerieren über die bekannten Anwendungen hinaus neue Potenziale. Es kann heute davon ausgegangen werden, dass elektronische Komponenten und die Gleichspannungstechnik insgesamt auch in den Spannungsebenen der Verteilungsnetze (Mittelspannung, Niederspannung) interessante Lösungsoptionen bieten. Allerdings sind für einen breiten Einsatz der Gleichspannungstechnik in diesen Spannungsebenen noch wesentliche Fragestellungen zu klären, die sowohl die Systemintegration (Regelung, Schutztechnik etc.) als auch die Entwicklung leistungsfähiger, effizienter und zuverlässiger Komponenten und Anlagen betreffen. Dieses Vorhaben hat zum Ziel, die Anforderungen an die benötigten Komponenten und Systeme zu analysieren und zu identifizieren und darauf basierend neue Komponenten zu entwickeln und zu testen. Die einzelnen Arbeitspakete des Vorhabens sind: AP1 Gleichspannungswandler - AP2 Leistungshalbleiterbauelemente - AP3 Transformatoren für Mittelfrequenz - AP4 Schalten von DC, Schutztechnik - AP5 Isolation bei hochfrequenter Belastung - AP6 Kabelsysteme.
Im Projekt 'ETA-Transfer' sollen Erkenntnisse aus dem Vorgängerprojekt 'ETA-Fabrik' bei ausgewählten Unternehmen als Leuchtturmprojekte in der Praxis angewendet werden. Hierbei werden Prozesse der industriellen (Stückgut-)-Produktion zusammen mit dem Gesamtsystem (d.h. des Zusammenwirkens von Maschinenpark, Versorgungstechnik und Gebäudehülle) betrachtet und daraus sinnvolle technische Energieeffizienzmaßnahmen abgeleitet. Die TU Darmstadt wird hierzu in ausgewählten Unternehmen jeweils zuerst Potenzialanalysen durchführen, an die sich dann ebenso begleitete Umsetzungsphasen mit Investitionen in die vorgeschlagenen energieeffizienten Maschinen/Technologien anschließen.
Für die Felderprobung neuer Netzbetriebskonzepte auf Mittelspannungsebene, die Bereitstellung regionaler Systemdienstleistungen und zur Teilnahme an regionalen Energiemärkten werden Windenergieanlagen für ein flexibles Blindleistungsmanagement umgerüstet und sogenannte STATCOM-Container errichtet. Die Umrüstung der Windenergieanlagen ermöglicht eine wirkleistungsunabhängige Bereitstellung von Blindleistung (STATCOM-Fähigkeit) sowie eine Erweiterung des Blindleistungsstellbereichs (Q+-Aufrüstung). Eine weitere Option zur Kompensation von Spannungsschwankungen bieten STATCOM-Container - auch an Standorten, an denen keine STATCOM-fähigen Windenergieanlagen vorhanden sind. Zur Minimierung wirtschaftlicher Risiken werden die zu untersuchenden Netzbetriebskonzepte vor der Felderprobung im Labor getestet. Dies gilt insbesondere für das Konzept eines 'Intelligenten Dispatcher' sowie für neue Netzregelungskonzepte zur Spannungs-Blindleistungsoptimierung.
Das Gesamtziel des Investitionsvorhabens und des dazugehörigen Forschungsvorhabens besteht im Aufbau einer intelligenten Anlage zur Verarbeitung rezyklierter Hochleistungsfasern unter Integration von Industrie 4.0-Ansätzen in Hightech-Anwendungen. Die Herstellung von Organoblechen auf Basis von Vliesstoffen aus rezyklierter Hochleistungsfasern gibt eine Antwort auf die immer drängender werdende Frage nach der Verarbeitung von Carbonfaserabfall, insbesondere vor dem Hintergrund der drohenden Einstufung von CFK als 'gefährlicher Abfall' und dem damit verbundenen Deponieverbot. Mit dem Investitionsvorhaben werden die technischen Grundlagen für die Durchführung des Forschungsvorhabens geschaffen. Die bisher vorhandene Anlagentechnik wird durch weitere Aggregate sowie Hard- und Software ergänzt, um den Gesamtprozess darstellen und analysieren zu können. Dies beinhaltet: - die Anlagenerweiterung im Bereich der Faservorbereitung und -mischung, um eine kontinuierlich Prozesskette abzubilden - den Aufbau eines Aggregates zur kontinuierlichen, thermischen Konsolidierung der Vliesstoffe zu Organoblechen, - Verarbeitung von Hybridvliesstoffen - Verarbeitung reiner Carbonfaservliesstoffe und separate Zuführung thermoplastischer Matrixwerkstoffe (Folien oder Vliesstoffe) - den Einbau notwendiger Sensortechnik inkl. Auswerteeinheiten zu Qualitätsüberwachung - die Installation von Hard- und Software zur Fertigungs- und Anlagensteuerung.
Der Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Da-gegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen bisher vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf ersten funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagen-betrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.
Der weitere Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Dagegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagenbetrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.
Der weitere Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Dagegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen bisher vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf ersten funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagenbetrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.
| Origin | Count |
|---|---|
| Bund | 132 |
| Type | Count |
|---|---|
| Förderprogramm | 132 |
| License | Count |
|---|---|
| offen | 132 |
| Language | Count |
|---|---|
| Deutsch | 131 |
| Englisch | 8 |
| Resource type | Count |
|---|---|
| Keine | 30 |
| Webseite | 102 |
| Topic | Count |
|---|---|
| Boden | 95 |
| Lebewesen und Lebensräume | 73 |
| Luft | 55 |
| Mensch und Umwelt | 132 |
| Wasser | 42 |
| Weitere | 132 |