API src

Found 24 results.

Untersuchungen zur Klärung der Funktion der ELIP's bei höheren Pflanzen

Dem Antrag liegt die Hypothese zugrunde, wonach ELIPs Xanthophyll-bindende Proteine sind, die der Abstrahlung überschüssiger und gefährlicher Lichtenergie dienen. Diese These soll geprüft werden, indem ELIP-mRNA-Sequenzen in Antisenseorientierung in Lutein-freie Tomatenpflanzen integriert werden. Diese Pflanzen sollten empfindlich gegen hohe Lichtflüsse sein. Zusätzlich wird die Expression der ELIPs auf mRNA- und Proteinebene untersucht. Dazu sollen Antikörper gegen den Aminoterminus der ELIPs gewonnen und die ELIP-Expression im Wildtyp, in transgenen Pflanzen, und in deren Fruchtentwicklung untersucht werden. Der zweite Teil des Antrages ist der Beantwortung der Frage gewidmet, in welchen Zelltypen von C4-Pflanzen (Bündelscheiden oder Mesophyll) ELIPs exprimiert werden. Diese Frage soll mit Methoden der Immunbiologie auf mikroskopischer Ebene analysiert werden. Mit Antikörpern gegen phosphorylierte Aminosäuren wird geprüft, welchen Einfluss Proteinkinasen auf die Integration und Stabilität von ELIPs besitzen. Zusätzlich werden nqp-Mutanten von Ararbidopsis auf die Expression von ELIPs untersucht. Die Vorhaben werden in Zusammenarbeit mit ausländischen Gruppen durchgeführt.

Knockout'- und RNAi-Mutanten der Allenoxidcylase und die Jasmonatbiosyntheseregulation in der Entwicklung von Arabidopsis

Jasmonate sind Signalmoleküle in pflanzlichen Entwicklungsprozessen und bei der Abwehrreaktion der Pflanzen auf biotischen und abiotischen Stress. Eine Funktionsanalyse mit Hilfe von Mutanten der Regulation ihrer Biosynthese fehlt. Durch einen breiten GC/MS-gestützten Screen sollen solche Mutanten isoliert werden. EMS-mutagenisierte Arabidopsis-Keimlinge, die das Reportergen GUS unter der Kontrolle des jasmonatresponsiven Th2.1-Promotors enthalten, werden auf verschiedene Mutantentypen gescreent: 1. GUS+-Pflanzen (konstitutive Jasmonatüberproduktion), 2. Pflanzen, die nach Sorbit-Stress (im Wildtyp Anstieg der endogenen Jasmonatmenge) GUS--negativ sind und durch JA normalisierbar sind (Jasmonatbiosynthesemutanten, einschließlich der gesuchten Mutanten der Regulation), 3. GUS+Pflanzen nach Sorbit-Stress, die nicht durch Jasmonat normalisierbar sind (Jasmonatsignaltransduktionsmutanten, die im Projekt unbearbeitet bleiben). Überproduzenten und Biosynthesemutanten werden durch GC/MS auf Jasmonatgehalt und Octadecanoide untersucht, so dass auch Regulationsmutanten der Jasmonatbiosynthese selektierbar werden. Sie dienen durch Charakterisierung von Jasmonatdefizienz und -überproduktion zur Funktionsanalyse der Jasmonatwirkungsweise in Wachstum, Differenzierung und der Antwort auf Stress und Pathogenbefall.

ENGENDER - Exploration genetischer Diversität von Brassica napus und Brassica spec. zur Erschließung neuer Resistenzmerkmale gegen bedeutende Krankheiten im Raps, Teilvorhaben 1: Identifikation und Vorbereitung neuer Resistenzmerkmale gegen drei bedeutende pilzliche Krankheiten im Raps

ENGENDER ist ein Verbundprojekt mit der NPZ Innovation GmbH und der Abteilung Molekulare Phytopathologie und Biotechnologie der CAU Kiel, dessen Ziel darin besteht, neue Resistenzmerkmale gegen drei bedeutende Raps-Krankheiten zu identifizieren, diese für die Rapszüchtung nutzbar zu machen und Mechanismen der Wirt-Pathogen-Interaktion aufzuklären. Dies zu erreichen wird zunächst eine umfangreiche Kollektion bestehend aus genetisch diversen Brassica napus, B. oleracea und B. rapa Akzessionen in standardisierten Gewächshaustests auf Resistenzmerkmale gegen die Erreger Leptosphaeria maculans, Sclerotinia sclerotiorum und Cylindrosporium brassicae hin getestet. Genotypen mit qualitativer oder quantitativer Resistenz gegen den jeweiligen Krankheitserreger dienen als Ausgangspunkt für genetische Analysen und als Eltern für Kreuzungen mit Elite-Rapslinien. Im Einzelnen beinhalten diese Prozesse folgende aufeinander aufbauende Arbeitsschritte: - Lokalisation der Resistenzmerkmale im jeweiligen Genom durch Kartierungsarbeiten (joinded linkage analysis, GWAS) in Kombination mit Transkriptomanalysen - Verifizierung von Funktionen genetischer Faktoren in der pflanzlichen Abwehr von Arabidopsis und Raps durch Genmutation und Genüberexpression - Entwicklung molekularer Marker für Resistenzmerkmale - Überführung von Resistenzmerkmalen in Raps Elite-Linien durch direkte Kreuzung oder Erzeugung von Resynthesen für die spätere Kreuzung mit Raps Neben der Identifikation neuer Resistenzmerkmale werden im Rahmen von ENGENDER das pflanzliche Material und die molekularen Marker entwickelt, um mittel- bis langfristig Rapssorten mit verbesserter Krankheitsresistenz zu erzeugen.

BioEnergie2021 - BioÖl: Biotechnologische Sink-Regulation zur Erhöhung und Optimierung der Kapazität der Rapsölproduktion, BioEnergie2021 - BioÖl: Biotechnologische Sink-Regulation zur Erhöhung und Optimierung der Kapazität der Rapsölproduktion

Pflanzlicher Metabolismus von Xenobiotika

Pflanzen sind den verschiedensten Fremdstoffen ausgesetzt, u.a. auch den von Menschen eingesetzten Xenobiotika, die Bestandteile von Herbiziden, Insektiziden und Wachstumsregulatoren sind. Diese Xenobiotika werden häufig nach Konjugation mit dem Tripeptid Glutathion metabolisiert, kompartimentiert und damit physiologisch inaktiviert. Aber auch endogene Metabolite können in der Pflanze an Glutathion konjugiert und abgebaut werden. Die molekularen Komponenten des pflanzlichen Glutathion-Konjugat-Katabolismus und deren Funktionen sind allerdings noch wenig verstanden und sollen näher untersucht werden. Es ist vorgesehen, diesen metabolischen Weg in Saccharomyces cerevisiae zu modellieren. Die Hefe ist ein ideales System, um den Glutathion Konjugat-Abbau zu rekonstituieren und zu analysieren. Die gewonnenen Erkenntnisse werden zurück auf das Pflanzensystem übertragen. Zusätzliche Ziele sind die funktionellen Analysen der pflanzlichen Glutathion-S-Transferasen und der Phytochelatin-Synthase beim Konjugat-Metabolismus. Zu diesem Ziel werden durchgeführt: i) Expressionsanalysen in Hefe, um Substrat-Spezifitäten innerhalb der Familie der Glutathion-S-Transferasen zu charakterisieren; ii) pflanzengenetische Ansätze, um synthetisch erzeugte Mutanten in Abhängigkeit von der Funktion der Phytochelatin-Synthase zu erkennen; iii) Analyse des Schwefel-Metaboloms in Arabidopsis durch Einsatz von stabilen Schwefel-Isotope und ultrahochauflösender Massenspektroskopie, um die Änderungen in den Poolgrößen von Glutathion und seinen Derivaten zu verfolgen.

Teilprojekt 1: Methodenentwicklung zur Herstellung sicherer transgener Pflanzen der naechsten Generation^Teilvorhaben 6: Erzeugung markergenfreier Pflanzen durch Nutzung des gamma-delta Resolvase/res Rekombinationssystems..^Teilprojekt 7: Klonierung und Optimierung von Expressionskassetten und Genen des T-DNA Integrationskomplex aus Agrobakterien für die Mikroinjektion^Teilprojekt 8: Eliminierung von Transformationsmarkern durch die Kopplung mit einem N-Acetyl-phosphinothricin-Deacetylase-Gen als induzierbarem negativem Selektionsmarker^Teilprojekt 3: Eliminierung ueberfluessiger Gensequenzen nach erfolgreicher Selektion bei der Zuckerruebe^Teilprojekt 4: Begrenzung der zu uebertragenden Gensequenz durch Mikroinjektion und Etablierung von Werkzeugen zur in-situ-Modifizierung von Pflanzenzellen^Teilprojekt 11: Markergeneleminierung basierend auf unabhaengiger Co-Integration nach Agrobacterium tumefaciens-vermittelter Transformation^Gezielte Uebertragung minimierter Transgensequenzen mit optimierter Funktion^Teilprojekt 10: Neue Strategien zur Begrenzung der zu uebertragenden Gensequenz auf das funktionell notwendige Mass durch Mikroinjektion^Teilprojekt 9: Entwicklung alternativer Markergene für die Selektion gentechnisch veraenderter Pflanzen und Etablierung der Plastidentransformation in Raps, Teilprojekt 2: Optimierte binaere Vektoren für die Herstellung transgener Pflanzen ohne unerwuenschte Sequenzen

Charakterisierung der Rolle von Mitgliedern der CRT1-Familie in wurzel-induzierter basaler Resistenz, SAR und ISR in Arabidopsis

BioEnergie2021: PROBIOPA - Nachhaltige Produktion von BIOmasse mit Kurzumtriebsplantagen der Pappel auf Marginalstandorten

Function of BAK1 in plant immunity

In nature most plants are resistant to most pathogens and disease is rather the exception than the rule. A key aspect of this phenomenon is a resistance response called 'innate immunity'. It is based on the host recognition of characteristic microbial molecules, known as MAMPs (Microbe Associated Molecular Patterns), by specific receptors called pattern recognition receptors (PRRs). A paradigm of a MAMP is flagellin, the main building unit of the mobility organ of bacteria. Bacterial flagellin is perceived by the pattern recognition receptor FLS2 (FLagellin Sensing 2) at the surface of plant cells. Binding of flagellin to FLS2 on the outside of the cells induces a set of physiological responses inside the cells, which we can easily measure in our lab and which ultimately contribute to limitation of bacterial invasion and plant resistance. Our lab has focused in the last years in understanding how FLS2, a single pass transmembrane molecule, functions to transmit the signal from outside of the cell to its inside. We could demonstrate that upon stimulation with flagellin, FLS2 associates very quickly at the plasma membrane with a second receptor known as BAK1 (BRI1-Associated Kinase 1). This was initially a big surprise because BAK1 was already known as the co-receptor of the BRI1, a plant hormone receptor which regulates plant development but not plant immunity. More recently we developed an original biochemical approach to label and detect phosphorylated receptors in cell cultures in vivo. This allowed us to show that the transmission of the flagellin signal occurs via phosphorylation of FLS2 and BAK1 within seconds after flagellin perception. In addition we could show that BAK1 is capable of regulating several PRRs other than FLS2 by forming stable complexes. Thus BAK1 appears to be a crucial regulator or plant immunity in addition to its role in plant development. Our recent progress on the plants' flagellin-sensing system was mostly obtained using Arabidopsis as plant model. In view of the ability of BAK1 to form stable complexes with PRRs in a ligand-dependent manner, we are now interested to fish out and identify new PRRs, notably from crop species, using a proteomic approach. The identification of more PRRs in different plants is a very important step toward understanding plant innate immunity. In more general terms, better knowledge about innate immunity is crucial because it may reveal new strategies to fight the devastating impact of some plant diseases.

Analyse des Kohlenhydratmetabolismus von Arabidopsis Pflanzen mit fehlenden plastidären Proteinkinasen und Proteinphosphatasen

1 2 3