API src

Found 16 results.

Teilvorhaben 1: N2-Umsetzer und MALDI-TOF/MS Analytik

Das Projekt "Teilvorhaben 1: N2-Umsetzer und MALDI-TOF/MS Analytik" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik durchgeführt. Die Gewinnung von Biogas aus nachwachsenden Roh- und landwirtschaftlichen Reststoffen ist wesentlicher Baustein einer nachhaltigen und CO2-neutralen Energieerzeugung. Verantwortlich für den anaeroben Abbau der Biomasse zu Biogas ist eine komplexe und dynamische Mikroflora bestehend aus einer Vielzahl von Bakterien und Archaeen. Die Mehrheit der beteiligten Mikroorganismen ist ebenso wie ihre Stoffwechselleistungen bislang nicht wissenschaftlich untersucht. Die Kenntnis der Biogas-Mikrobiologie wird jedoch als Schlüssel für die weitere technologische Optimierung der Biogasproduktion angesehen. Zur Aufklärung der mikrobiologischen Zusammenhänge gewinnen Hochdurchsatztechnologien zur DNA-Analyse zunehmend an Bedeutung. Jedoch sind die hiermit erhaltenen Datenmengen bislang nur ansatzweise auswertbar, da es häufig an Referenzdaten mangelt. Um die Hochdurchsatz-DNA-Analytik auch für die Biogasforschung zu erschließen, soll im Rahmen dieses Forschungsvorhabens eine Referenzdatensammlung für das Kern-('core') Mikrobiom von Biogasanlagen aufgebaut werden. 1. Auswahl und Beprobung von repräsentativen Biogasanlagen; 2. Etablierung neuartiger Verfahren zur Isolierung von Mikroorganismen aus Biogasreaktoren und Gewinnung von Isolaten; 3. Sequenzierung der Genome der Isolate und bioinformatische Auswertung; 4. Aufbau einer Referenzdatenbank für den Kernbestand an Mikroorganismen; 5. Etablierung einer zeitnahen Diagnostik des Reaktorzustandes mittels MALDI-TOF MS

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Biologie II, Bereich Mikrobiologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering').Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt E

Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Abteilung Bioinformatik und Biochemie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering').Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt D

Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Bioinformatik und Systembiologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering'). Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, Biofilm Centre, Molekulare Enzymtechnologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering').Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt F

Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Technische Universität München, Campus Straubing für Biotechnologie und Nachhaltigkeit, Lehrstuhl für Chemie Biogener Rohstoffe durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes technisches Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering'). Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt G

Das Projekt "Teilprojekt G" wird vom Umweltbundesamt gefördert und von enzymeta GmbH durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes technisches Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering'). Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Universität Bielefeld, Centrum für Biotechnologie durchgeführt. HotSysAPP möchte durch die Ausnutzung des stark vernachlässigten biotechnologischen Potentials der Archaeen einen Beitrag zur Bioökonomie leisten. Im Projekt sollen verbesserte Stämme mit innovativem Potential in konsolidierter Bioprozesstechnik mit Anwendungen in Fermentation und biokatalytischen Prozessen sowie neue 'Extremozym'-Systeme entwickelt werden. Für die Stammoptimierung wird ein Modell-basierter systembiologischer Ansatz unter Einsatz von aktuellen Hochdurchsatz-Technologien der Transkriptom-, Proteom-, und Metabolom-Analyse, sowie Modellierung, Genetik, Biochemie und Enzym-Engineering eingesetzt. In diesem Teilprojekt werden die Expressionsdaten auf Transkriptomebene erhoben, analysiert und interpretiert. Im Rahmen der Untersuchungen sind globale Analysen der Genexpression von besonderer Relevanz. In diesem Teilprojekt des Verbundvorhabens soll Hilfe der 'RNA-Sequenzierung' (RNAseq) die Genexpression quantifiziert und für die Genexpression wichtige Schaltelemente der Transkription (Promotoren, Terminatoren, antisense-Elemente) identifiziert werden. Die erfolgreiche Kombinierung dieser Elemente mit ausgewählten Genen wird dann ebenso in vivo mittels RNAseq getestet, um im Sinne einer Optimierung Modifikationen vorschlagen zu können. Dieser iterative Prozess betrifft zunächst die natürliche Expression aller Gene unter Produktionsbedingungen im Wildtyp und anschließend ähnliche Untersuchungen zu den gentechnisch veränderten Stämmen. Die Ergebnisse werden zusammen mit dem Partner P3 bioinformatisch analysiert und den Partnern P5 und P6 für die Modellierung übergeben.

Marine Microbial Biodiversity, Bioinformatics and Biotechnology (MICRO B3)

Das Projekt "Marine Microbial Biodiversity, Bioinformatics and Biotechnology (MICRO B3)" wird vom Umweltbundesamt gefördert und von Jacobs University Bremen gGmbH, University Development - Research Grants & IPR durchgeführt. Micro B3 will develop innovative bioinformatic approaches and a legal framework to make large-scale data on marine viral, bacteria; archaeal and protists genomes and metagenomes accessible for marine ecosystems biology and to define new targets for biotechnological applications. Micro B3 will build upon a highly interdisciplinary consortium of 32 academic and industrial partners comprising world-leading experts in bioinformatics, computer science, biology, ecology, oceanography, bioprospecting and biotechnology, as well as legal aspects. icro B3 is based on a strong user- and data basis from ongoing European sampling campaigns to long-term ecological research sites. For the first time a strong link between oceanographic and molecular microbial research will be established to integrate global marine data with research on microbial biodiversity and functions. The Micro B3 Information System will provide innovative open source software for data-processing, -integration, -visualisation, and -accessibility. Interoperability will be the key for seamless data transfer of sequence and contextual data to public repositories. Micro B3 will allow taking full advantage of current sequencing technologies to efficiently exploit large-scale sequence data in an environmental context. Micro B3 will create integrated knowledge to inform marine ecosystems biology and modelling. Moreover, it will facilitate detecting candidate genes to be explored by targeted laboratory experiments for biotechnology and for assigning potential functions to unknown genes. Micro B3 will develop clear IP agreements for the protection and sustainable use of pre-competitive microbial genetic resources and their exploitation in high potential commercial applications. To underline the translational character of Micro B3, outreach and training activities for diverse stakeholders are planned as well as an Ocean Sampling Day to transparently make project results accessible and gain valuable user feedback.

Biochemie und Quantifizierung der Essigsäure-Konversion in Biogasanlagen

Das Projekt "Biochemie und Quantifizierung der Essigsäure-Konversion in Biogasanlagen" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Mikrobiologie und Biotechnologie durchgeführt. Vorhandensziel: Neue Methoden zur Populationsgröße deuten an, dass der Anteil der acetoklastischen Methanproduzenten an der Organismengemeinschaft von methanogenen Archaea in der Biogasanlage gering ist. Es ist jedoch anzumerken, dass Acetat neben CO2 und H2 das Hauptprodukt der Umsetzung der Acidogenese und der Acetogenese ist. Also muss Acetat verstoffwechselt werden, damit der Gesamtprozess nicht zusammenbricht. Es wird diskutiert, dass acetogene Bakterien in der Biogasanlage einen Teil des Acetats syntroph zu CO2 und H2 oxidieren, was aber aus thermodynamischen Gründen höchst unwahrscheinlich ist. Das geplante Forschungsprojekt soll daher eine Erklärung liefern, wie Acetat in mesophilen Biogasanlagen tatsächlich umgesetzt wird. Zudem wird postuliert, dass die Acetogenese und die Methanogenese gewöhnlich den Flaschenhals der Biogasproduktion darstellen. Somit spielt die Umsetzung von Acetat eine entscheidende Rolle für die Gesamt-Produktivität einer Biogasanlage. Hier sollen Ansätze gefunden werden, um die Effizienz von Biogasanlagen zu steigern. Arbeitsplanung: 1) Biochemische Charakterisierung der Acetat-Umsetzung durch 'in situ' Analyse in Proben von Biogasanlagen. 2) Analyse des Metabolismus von acetoklastischen Methanogenen in Biogasanlagen. 3) Quantifizierung des Enzymgehalts von Schlüsselenzyme des Acetatabbaus 4) Quantifizierung der Expression von Genen der Schlüsselenzyme. 5) Charakterisierung von neuen Spezies, die in der Acetat-Umsetzung involviert sind.

1 2