Das Projekt "Meteorological Observation and Assimilation of the Atmosphere on Long term (Dead Sea, Israel)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Since 2006, the Institute for Meteorology and Climate Research (IMK-TRO) is involved in intensive field measurements at the Dead Sea. Long term measurements of meteorological parameters, particle concentrations and ozone mixing ratios were initiated - accompanied by short term activities like vertical profiling and determination of radiation and the surface energy balance. Objective and Results: The objective is to study the mesoscale wind systems and their role in the distribution of pollutants near the Dead Sea. Preliminary data evaluation shows that a complexe superposition of various wind systems is abundant. The existence of the widespread lake plays a mayor role in the development of atmospheric layering during the course of the day. However, synoptic influence can disturb the regional system. Since September 2006 an permanent meteorological station is working at Massada National Monument approx. at elevation sea level. Measurements of the actual week are shown here . The whole data set is available on request.
Das Projekt "Can the resistance and resilience of trees to drought be increased through thinning to adapt forests to climate change?" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.
Das Projekt "Co-estimation of the Earth main magnetic field and the ionospheric variation field" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Mathematik durchgeführt. The aim of this project is to co-estimate models of the core and ionosphere magnetic fields, with the longer-term view of building a 'comprehensive' model of the Earths magnetic field. In this first step we would like to take advantage of the progresses made in the understanding of the ionosphere by global M-I-T modelling to better separate the core and ionospheric signals in satellite data. The magnetic signal generated in the ionosphere is particularly difficult to handle because satellite data provide only information on a very narrow local time window at a time. To get around this difficulty, we would like to apply a technique derived from assimilation methods and that has been already successfully applied in outer-core flow studies. The technique relies on a theoretical model of the ionosphere such as the Upper Atmosphere Model (UAM), where statistics on the deviations from a simple background model are estimated. The derived statistics provided in a covariance matrix format can then be use directly in the magnetic data inversion process to obtain the expected core and ionospheric models. We plan to apply the technique on the German CHAMP satellite data selected for magnetically quiet times. As an output we should obtain a model of the ionospheric magnetic variation field tailored for the selected data and a core-lithosphere field model where possible leakage from ionospheric signals are avoided or at least reduced. The technique can in theory be easily extended to handle the large-scale field generated in the magnetosphere.
Das Projekt "sub project: Coordination Funds" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Geowissenschaften, Abteilung Meteorologie durchgeführt. High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.
Das Projekt "Pflanzengeographie und Pflanzenoekologie der Nebeloasen Namibias" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Fakultät II Biologie, Institut für Botanik und Botanischer Garten, Fachgebiet Allgemeine Botanik durchgeführt. In tropischen und subtropischen Kuestenwuesten treten wiederholt Nebeloasen auf. Die Nebeloasen Namibias werden vor allem von verschiedenen Flechtenarten besiedelt, zu denen sich nur wenige Spezialisten unter den Hoeheren Pflanzen gesellen. Die Arbeiten zeigen, dass die namibischen Nebeloasen zum Teil durch die feuchte Luft des benachbarten Meeres und zum Teil durch Kaltluftstroeme aus dem Inland verursacht werden. Je nach Intensitaet und Dauer der Nebel-Wetterlagen ergeben sich unterschiedliche Flechten-Gesellschaften, deren mittlere Bio- Produktion ebenso bestimmt wird wie die CO2-Assimilation in Abhaengigkeit von Anfeuchtung und Salzeintrag. Ausserdem werden der Transport und die Erosion der Flechten durch den Wind untersucht. Hieraus ergeben sich Empfehlungen fuer Nutzung und Naturschutz. Die hier lebenden Hoeheren Pflanzen sind auch Gegenstand der Untersuchungen. Von Interesse ist ihre Anatomie, Cuticula-Struktur, Wasseraufnahme und -leitung sowie ihre Bioproduktion in Abhaengigkeit vom zeitlichen Verlauf der Wasseraufnahme.
Das Projekt "Modellierung der Interaktion von Hitze- und Trockenstress auf die Ertragsbildung von Weizen unter Berücksichtigung von (CO2)-Effekten auf Bestandesebene" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität Kiel, Institut für Pflanzenbau und Pflanzenzüchtung durchgeführt. Durch steigende Sommertemperaturen in Kombination mit Trockenstress und dem mittelfristigen Anstieg der CO2-Konzentration in der Atmosphäre steigt die Wahrscheinlichkeit von Hitzestress während der Kornanlage und Kornfüllungsphase von Winterweizen in Mitteleuropa deutlich an. Es existieren bisher nur wenige experimentelle Datensätze zur Quantifizierung von Hitzestress auf die Ertragsbildungsprozesse von Winterweizen, entsprechend fehlen genügend validierte Modelle zur Prognose dieser Effekte. Das beantragte Vorhaben hat zum Ziel, die Wirkung von Hitzestress auf die Ertragsbildung von Winterweizen auf Bestandesebene experimentell zu untersuchen und existierende Modelle zur Ertragsbildung von Winterweizen im Hinblick auf deren Prognose der Ertragseffekte von Hitzestress zu verbessern. Im Fokus der Untersuchungen stehen hierbei die Effekte von Hitzestress auf die Kornanlage sowie die Seneszenz der assimilatorisch aktiven Organe während der Abreifephase. Hitzestress soll im Feldversuch direkt durch Einsatz eines FATE-Systems (Free Air Temperature Enrichment) sowie durch Trockenstress und in Kombination beider Faktoren induziert werden. Aus den eigenen sowie weiteren, im Projektverbund erhobenen experimentellen Daten sollen geeignete Modifikationen bzw. Neuformulierungen relevanter Prozessbeschreibungen in Ertragsbildungsmodellen für Winterweizen entwickelt werden. Hierbei wird im Rahmen des Verbundprojektes ein skalenübergreifender Ansatz (Organ/Bestand/Region) verfolgt. Grundlage hierfür ist ein modular konzipierter Modellverbund.
Das Projekt "Reaktion des Photosyntheseapparats in tropischen Pflanzen auf starkes sichtbares und ultraviolettes Licht" wird vom Umweltbundesamt gefördert und von Universität Düsseldorf, Institut für Biochemische Pflanzenphysiologie durchgeführt. Das Vorhaben umfasst Untersuchungen der inhibierenden Wirkung von Sonnenstrahlung auf die Photosynthese in tropischen Pflanzen und deren Akklimatisation an ambiente Lichtbedingungen. Die Reaktion des Photosyntheseapparats auf natürlichen 'Lichtstress' in Schatten- und Sonnenblättern wird mittels verschiedener Messparameter analysiert. Insbesondere werden spezifische Filter für ultraviolettes Licht (UV-B und UV-A) angewandt, um die Reaktion der Blätter auf die solare UV-Strahlung zu untersuchen. Im Vordergrund der Messungen steht der CO2-Gaswechsel, da Studien mit artifizellem UV-Licht eine bevorzugte Inhibition der CO2-Assimilation durch UV-B gezeigt haben. Daneben werden Änderungen der Aktivitäten der Photosysteme II und I durch Chlorophyllfluoreszenz- bzw. Absorptionsmessungen erfasst. Die Akklimatisation von Schattenblättern an tägliche Sonnenexposition wird mehrere Wochen lang anhand der Zusammensetzung der Photosynthesepigmente und Anreicherung von UV-absorbierenden Substanzen verfolgt. Modellversuche mit Mutanten von Arabidopsis thaliana sollen klären, ob das im Xanthophyllzyklus gebildete Zeaxanthin und die assoziierte thermische Dissipation von Anregungsenergie zum Schutz des Photosystems I beiträgt. Die Sonnenexpositions-Experimente und physikalischen Messungen werden weitgehend am Smithsonian Tropical Research Institute in Panama in Kooperation mit Dr. K. Winter durchgeführt. Pigmentanalysen und Datenverarbeitung sowie die Untersuchung einer C4-Pflanzenart und der Arabidopsis-Mutanten erfolgen am Institut für Biochemie der Pflanzen in Düsseldorf.
Das Projekt "Evaluierung von Verbesserungen in QPE und QPN in einem Echtzeit-vorhersagesystem für Abfluss und Überflutungen mit Datenassimilatio" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre durchgeführt. Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.
Das Projekt "Stoffproduktion und Wasseerhaushalt von Waldbaeumen" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Institut für Terrestrische Ökosystemforschung, Lehrstuhl für Pflanzenökologie durchgeführt. CO2-Assimilation, Transpitation und Biomasseproduktion von Larix decidua, Larix leptolepis und Picea abies werden unter natuerlichen Standortbedingungen gemessen. Die Abhaengigkeit des Gasaustausches von Licht, Temperatur, Luftfeuchte und Wasserzustand wird untersucht.
Das Projekt "Wirkung von Agrochemikalien auf Speicherungsprozesse und die Qualitaet des pflanzlichen Ertragsgutes" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 19 Ernährungs- und Haushaltswissenschaften, Institut für Pflanzenernährung durchgeführt. Wachstumsregulatoren und Pflanzenqualitaet, Qualitaetswirkung von Duengemitteln.
Origin | Count |
---|---|
Bund | 195 |
Type | Count |
---|---|
Förderprogramm | 195 |
License | Count |
---|---|
offen | 195 |
Language | Count |
---|---|
Deutsch | 133 |
Englisch | 79 |
Resource type | Count |
---|---|
Keine | 133 |
Webseite | 62 |
Topic | Count |
---|---|
Boden | 150 |
Lebewesen & Lebensräume | 182 |
Luft | 151 |
Mensch & Umwelt | 195 |
Wasser | 155 |
Weitere | 195 |