API src

Found 141 results.

CO2-Emissionen und C-Umsatz im Boden des ARINUS-Standorts Schluchsee

Das Projekt "CO2-Emissionen und C-Umsatz im Boden des ARINUS-Standorts Schluchsee" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Bodenkunde und Waldernährungslehre durchgeführt. Die Untersuchung konzentriert sich auf den C-Haushalt des Bodens. Ziel ist die Erfassung aktueller C-Umsatzraten und die Erstellung einer C-Bilanz fuer den Boden. Zentraler Teil ist die Quantifizierung der CO2-Emission, die vorrangig aus der Mineralisierung der org. Substanz und der Wurzelrespiration resultiert. In Zusatzexperimenten soll geprueft werden, welche Anteile der Gesamtemission aus der org. Auflage bzw. dem Mineralboden stammen und welchen Beitrag die Wurzelrespiration zur gesamten CO2-Produktion leistet. Durch Einbeziehung des FEELING-Kalkungsexperiments soll geprueft werden, ob eine Kalkung mit 4 t Dolomitgranulat die Aktivitaet C-heterotropher Mikroorganismen nachweisbar stimuliert und ob es tatsaechlich zu einem verstaerkten Abbau des Humusvorrates kommt. Die Messung der CO2-Emission erfolgt in dreistuendigen Zyklen mit stationaeren, temporaer geschlossenen Messkammern, die an einen CO2-Analysator angeschlossen sind. Simultan miterfasst wird die Bodentemperatur in der Auflage und im Mineralboden. Zur Erfassung der raeumlichen Variation, wird mit jeweils 4-facher Wiederholung gemessen. Durch die laufende Messung des Streufalls sowie des HCO3- und DOC-Austrages im Rahmen des ARINUS-Projektes besteht nun auch die Moeglichkeit, eine auf aktuellen Umsatzraten basierende, weitgehend vollstaendige C-Bilanz zu erstellen.

DAAD - Procope Programm: Disturbance of ecosystem respiration measurements in forests by diurnal fluctuations of the volatile soil Carbon stock

Das Projekt "DAAD - Procope Programm: Disturbance of ecosystem respiration measurements in forests by diurnal fluctuations of the volatile soil Carbon stock" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. The volatile Carbon stock of soils, i.e. the storage that underlies short term changes, includes the gaseous CO2 present in the soil air and the dissolved CO2 in the water. This stock is marginal in contrast to the carbon stored in soil organic matter or in the biomass, however, it can amount up to several times the daily ecosystem respiration and can be equivalent to the CO2 content of an atmospheric air column of more than 50 m. Therefore ecosystem CO2 exchange measurements interfere with soil stock changes, i.e. an CO2 efflux is not necessarily the result of an actual production and soil CO2 production can also be masked by accumulating CO2 in the soil. The time scales of the volatility of soil CO2 can be seasonal (e.g. summer filling the subsoil with CO2 when respiration is high, depletion in winter when respiration rates are low), multi-daily (e.g. stock filling after rainy period by impeded top-soil diffusion ) and hourly (e.g. by the diurnal temperature cycle causing a extension and compression of the soil-air column ). To benefit from the complementary methodological and scientific experience and in order to support the collaboration of young scientist of different institutes and research areas a cooperation project was established. Partners in this project are the Institute of Soil Science of the University of Freiburg and the UMR Ecologie et Ecophysiologie forestiere of the INRA in Champenoux. The project is funded by the DAAD Procope program. As Partners The central goal of the project is to reveal possible discrepancies between soil CO2 efflux and soil respiration, i.e. the actual production of CO2. We hypothesize, that soil respiration models are significantly improved when the efflux rates are corrected for changes of the volatile carbon stock. As test sites two complementary forest sites were chosen. A deeply aerated sandy/gravely soil at Hartheim,Germany, and a loamy site with stagnic subsoil and limited aerated at Hesse, France. Following subgoals will be treated: characterization of the gas transport properties of the sites and the spatial and temporal variability. quantification of diurnal fluctuations of soil CO2 at the two forest sites identification of environmental (weather and site) factors controlling these fluctuations development and implementation of a soil gas transport model to include short-term stock changes in respiration models revealing relationships between the d13C-signature of soil gases CO2 efflux and the soil CO2 stock changes. vertical partitioning of the volatile soil carbon sources by a combined approach of d13C characteristics of the soil air and the efflux and a Fick's law modelling of gas transport.

CarboMais: C-Flüsse im Maisanbau

Das Projekt "CarboMais: C-Flüsse im Maisanbau" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität zu Kiel, Institut für Pflanzenbau und Pflanzenzüchtung, Abteilung Grünland und Futterbau/Ökologischer Landbau durchgeführt. Die Nachhaltigkeit der Biogasproduktion im Hinblick auf die THG-Minderung wird entscheidend durch die Effekte des Substratanbaus auf die Veränderungen des organischen C-Gehaltes (Corg) des Bodens beeinflusst. Dies ist insbesondere dann der Fall, wenn im Rahmen von Landnutzungsänderungen mit einer Freisetzung großer CO2- und N2O-Mengen zu rechnen ist. Aber auch die Wahl der für die Substratproduktion eingesetzten Kulturart kann einen Effekt auf die Veränderung des Corg-Gehalt des Bodens haben. Trotz der immensen Bedeutung der Kohlenstoffflüsse im System Boden-Pflanze besteht noch erheblicher Forschungsbedarf was die Bewertung der Humuswirkung von Kulturpflanzenarten, insbesondere Mais, betrifft. Dies gilt speziell für Mais deshalb, weil die verfügbaren Daten zur Humusbilanz mehr als 30 Jahre alt sind und der Zuchtfortschritt der letzten Jahrzehnte damit nicht berücksichtigt ist. Das Ziel des Projektes besteht daher darin, in einem Feldexperiment die Effekte des in den letzten Jahrzehnten erfolgten Zuchtfortschritts von Mais auf dessen Wurzelmassenbildung, und damit auf die Humusreproduktionsleistung, erstmalig für nordwesteuropäisches Zuchtmaterial zu quantifizieren. In einem zweijährigen Feldversuch wird der Ertragsfortschritt von Wurzel- und Sprossmasse an einem Set von 10 mittelfrühen Silomaissorten geprüft, die in den letzten 40 Jahren zugelassen wurden. Hierzu wird mittels destruktiver und nicht-destruktiver Verfahren die Dynamik der Spross- und Wurzelmassenakkumulation quantifiziert. Ergänzende Erhebungen zu CO2-Flüssen (Gasaustausch, Bodenatmung) ermöglichen eine modellgestützte Ermittlung von sortenspezifischen C-Bilanzen.

Teilprojekt: Response of belowground carbon, sulphur and iron cycling in fen soils

Das Projekt "Teilprojekt: Response of belowground carbon, sulphur and iron cycling in fen soils" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Forschungsstation durchgeführt. Klimamodelle sagen eine Zunahme von Sommertrockenheit mit Starkregenereignissen in mittleren und nördlichen Breiten vorher, die das hydrologische Regime von Feuchtgebieten, einem Kohlenstoffspeicher von globaler Bedeutung verändern. Die Auswirkungen von verstärkter Austrocknung und Wiederbefeuchtung, sowie möglicher Vernässung, auf Produktivität, Bodenatmung, Methanemissionen und die Kopplung des Kohlenstoffkreislaufes an Redoxprozesse im Boden ist bislang ungenügend verstanden. Im Projekt wird das hydrologische Regime eines Niedermoores experimentell verändert und die Konsequenzen für die wesentlichen Umsetzungen analysiert die zum Kohlenstoffkreislauf beitragen. Zu diesem Zweck wird die Veränderung in Bodenwassergehalten, -temperaturen und -respiration quantifiziert. Die Verfügbarkeit, Produktion und der Verbrauch von relevanten Elektronenakzeptoren für die Bodenatmung wird bestimmt, da diese die Methanbildungsrate im Boden maßgeblich beeinflussen. Eine Laborstudie dient der Untersuchung der Wirkung einer Bandbreite von Austrocknungsbedingungen auf Respirationsraten. Diese und zuvor gewonnen Datensätze werden genutzt um Auswirkungen auf den Kohlenstoffkreislauf mit dem Ökosystemmodell ECOSYS zu analysieren. Hierbei steht zunächst die kausale Prozessanalyse und schließlich die Simulation von zu erwartenden Veränderungen auf der Zeitskala von Jahrzehnten im Vordergrund.

Vorhaben Teilprojekt 4b und Teilprojekt 6b

Das Projekt "Vorhaben Teilprojekt 4b und Teilprojekt 6b" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Teilprojekt 4 quantifiziert rezente Ökosystemprozesse, v.a. CO2- und CH4-Fluesse zwischen Landoberfläche und Atmosphäre in Permafrost-Landschaften Nordostsibiriens am Beispiel von 2 Untersuchungsgebieten. TP6 simuliert die vergangene, rezente und zukünftige Bodenkohlenstoffdynamik und damit verbundene Kohlenstoffflüsse in Abhängigkeit von Klima, atmosphärischer CO2 Konzentration und Bodeneigenschaften. In TP4 wird die räumliche Variabilität der Flüsse auf der Mikro- bis Makroskala mit Hilfe von Bodendaten, stationären und mobilen Eddy-Kovarianz-Stationen und Fernerkundungsdaten quantifiziert. Es werden Verfahren zur Hochskalierung der gemessenen Flüsse auf die Skala von regionalen Erdsystemmodellen entwickelt und die Kohlenstoffbilanz der Permafrostgebiete auf den verschiedenen Skalen erstellt. Zur Analyse der Dynamik physiologisch interpretierbarer Einzelprozesse wie Photosynthese, Pflanzenatmung, heterotrophe Bodenatmung, CH4 Produktion und -Oxidation werden detaillierte isotopengeochemische Prozessstudien durchgeführt. In TP6 werden Permafrost-relevante Prozesse wie der vertikale Kohlenstofftransport, die Stabilisierung organischen Materials und der Ab- und Umbau organischen Materials in das Ökosystemmodel JSBACH implementiert. Die dynamische Unterteilung der Landschaft in aerobe und anaerobe Bereiche findet besondere Berücksichtigung. Mittels JSBACH wird dann die Vulnerabilität des Bodenkohlenstoffs unter sich ändernden Umweltbedingungen prognostiziert.

Effects of elevated CO2 concentrations on carbon turnover in crop rotations studied in a Chinese and a German free air carbon dioxide enrichment (FACE) approach

Das Projekt "Effects of elevated CO2 concentrations on carbon turnover in crop rotations studied in a Chinese and a German free air carbon dioxide enrichment (FACE) approach" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Biodiversität durchgeführt. Die Böden der Welt sind die größten terrestrischen Kohlenstoffspeicher. Die rasch zunehmende CO2-Konzentration in der Atmosphäre wird die ober- und unterirdische Biomasseproduktion von Pflanzen stimulieren. Insbesondere in Agrarökosystemen sind bislang Rückkoppelungswirkungen des CO2-Anstieges auf den Corg-Gehalt in Böden bzw. auf die Bindung und Freisetzung von CO2 und damit auf den atmosphärischen CO2-Gehalt noch nicht ausreichend abschätzbar. Eine entscheidende Rolle spielt dabei der mikrobielle Umsatz des C in Böden. Diskutiert wird sowohl eine mögliche Beschleunigung des C- bzw. CO2-Umsatzes durch den vermehrten Anfall leicht verfügbarer C-Verbindungen im Boden, als auch eine Reduktion der Mineralisierungsdaten, die aus einem verzögerten Abbau von Pflanzenresten mit einem durch die CO2-Erhöhung verursachten größeren C:N-Verhältnis resuliert. Freiland-CO2-Anreicherungsversuche in ackerbaulich genutzten Systemen unter Verwendung der sog. Free Air Carbon Dioxide Enrichment (FACE) Technik existieren z.Z. nur in China und in Deutschland. Das vorliegende Projekt wird diese einzigartigen Versuchsansätze der beiden Projektpartner nutzen und die Wirkungen erhöhter CO2-Konzentrationen auf die ober- und unterirdische Biomassebildung der Fruchtfolgeglieder, auf die in situ Bodenatmung, auf den mikrobiellen Biomassegehalt der Böden einschließlich des respiratorischen Quotienten der mikrobiellen Biomasse sowie auf die Mineralisierungsraten von Pflanzenresten untersuchen. Gleichzeitig wird der Einfluss einer unterschiedlichen Stickstoff-Düngung überprüft. Das Projekt dient neben einem Methodenvergleich der Bewertung des Einflusses von unterschiedlichen Bodeneigenschaften und Klimaverhältnissen auf die CO2-Wirkung. Die experimenellen Daten sollen zur Verbesserung eines Modells zur Beschreibung des C- und N-Umsatzes in Böden beitragen.

Impact of long-term wetting on carbon cycling and climate change feedback in a northern temperate bog (Ontario, Canada)

Das Projekt "Impact of long-term wetting on carbon cycling and climate change feedback in a northern temperate bog (Ontario, Canada)" wird vom Umweltbundesamt gefördert und von Westfälische Wilhelms-Universität Münster, Institut für Landschaftsökologie durchgeführt. Northern peatlands represent an important global carbon stock and source of methane to the atmosphere. The fate of carbon in these environments under changed climatic conditions is thus of considerable scientific importance. Our knowledge of future peatland carbon cycling is deficient with respect to the effects of future wetter conditions, both by climate change and by changes in runoff networks surrounding peatlands. We will address this research gap at Luther Bog (Ontario), which represents a northern ombrotropic bog complex that, in one area, has undergone long-term wetter soil conditions. Preliminary work demonstrated that the long-term effects of 60 years of a) winter-wetter and b) winter-wetter and summer-drier soil moisture conditions can be studied against two reference sites of similar water table dynamics, yet different vegetation and soil temperatures. To identify the impact of these relevant climate change scenarios on carbon cycling is the overarching objective of the project. Specifically, we will - establish an atmospheric carbon balance in four areas of differing climate change analogues and quantify the effect on C fluxes, C sequestration and greenhouse warming potentials (GWP) - identify the impact of the changed soil hydrologic regime on in vitro and in situ peat decomposition and the chemical quality of the formed peat- identify changes in the distribution between soil microbial and plant-derived respiration as these are differentially dependent on climatic drivers - determine differences in the temperature dependency soil microbial and plant-derived respiration under background and wetter soil moisture regimeApart from closing an important empirical research deficiency, the project will provide an empirical basis for ecosystem modeling efforts that will generalize the response of peatlands to wetter conditions and allow for the testing of climate change scenarios. The overall hypothesis to be tested is that I) wetter conditions will lead to increased carbon sequestration due to slowing of soil respiration and II) to enhanced methane emissions due to less methane oxidation and establishment of plantcommunities adapted to wet conditions. We further hypothesize that the effect of additional methane emissions will outweigh that of carbon sequestration on a 100-year time scale. We also expect that more poorly decomposed and highly permeable peat accumulates that has a high potential for CO2 emissions under oxic conditions and a more pronounced seasonal dynamics of carbon fluxes. The aggrading peat masses would thus be much more instable against future changes in hydrologic boundary conditions.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Step Systems GmbH durchgeführt. Ziel des geplanten Projekts ist die Entwicklung eines innovativen drahtlosen CO2-Bodensensors zur Wasserstressbestimmung und effizienten teilflächenspezifischen Wassernutzung bei der landwirtschaftlichen Bewässerung. Im Unterschied zum gegenwärtigen Stand der Technik wird die Bewässerungswürdigkeit von Nutzpflanzen nicht indirekt über Bodenfeuchtemessungen, sondern direkt durch die Erfassung einer pflanzenphysiologischen Reaktion auf Wasserstress, nämlich der Reduktion der Wurzelatmung, ermittelt.

Tag-/Nacht-Schwankungen der CO2-Konzentrationen in Apfelanlagen

Das Projekt "Tag-/Nacht-Schwankungen der CO2-Konzentrationen in Apfelanlagen" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Obstbau und Gemüsebau durchgeführt. Mit Hilfe eines tragbaren, batterie-betriebenen CO2-Gasanalysators und Umweltsonden wurden Tagesgaenge von C02-Konzentrationen, Temperatur, Luftfeuchte, Einstrahlung und Windstaerke gemessen. Die hoechste C02-Konzentration in einer Apfelanlage von 632 ppm C02 wurde an einem fruehen Morgen vor Sonnenaufgang unter warmen, windstillen Bedingungen gemessen. An sonnigen, warmen Tagen blieb die C02-Konzentration tagsueber konstant bei 340-350 ppm C02. Die hoechste C02-Konzentration von 632 ppm wurde am tiefsten Messpunkt, d.h. 60 cm ueber dem Boden im unbewachsenen Baumstreifen gemessen, waehrend die C02-Konzentrationen an den anderen Messpunkten hoeher im Baum sowie zwischen und ueber den Baumreihen nicht so hoch anstiegen. Ziel der Untersuchungen ist es, sowohl die hoechsten C02-Konzentrationen zu ermitteln, die unter natuerlichen Bedingungen auftreten, auch als die niedrigsten C02-Konzentrationen, die die Photosynthese der Baeume u.U. begrenzen koennten.

Teilvorhaben 2: Ökosystemskalige CO2-Messungen im Boden und Modellierung der CO2-Flüsse

Das Projekt "Teilvorhaben 2: Ökosystemskalige CO2-Messungen im Boden und Modellierung der CO2-Flüsse" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Bodensystemforschung, Standort Leipzig durchgeführt. Die Auswirkung von Kohlenstoffsenken und -quellen in Wäldern auf die globale Kohlenstoffbilanz ist unsicher, u.a. weil die Bodenatmung nicht zuverlässig bestimmt werden kann. Ein neues, auf gasselektiven Membranschläuchen basierendes Verfahren ermöglicht eine linienförmige CO2-Messung auf der Ökosystemskala. Dieses Verfahren soll in drei Waldböden getestet und zum mehrjährigen Monitoring qualifiziert werden. Tiefenabhängig über die Ökosystemskala gemittelte CO2 Konzentrationen sollen mit gleichzeitig gemessenen lokale CO2-Konzentrationen verglichen werden. Ein Respirationsmodell wird entwickelt, kalibriert und validiert und die auf unterschiedlichen Skalen prozessbasiert aus den Konzentrationen ermittelten CO2-Flüsse werden in den Kontext zu oberirdischen Messungen von CO2-Flüssen und Konzentrationen gestellt und analysiert.

1 2 3 4 513 14 15