API src

Found 191 results.

Related terms

Bestandteile in Ensembles Land Bremen

Bestandteile in Ensembles. Unterschutzstellung als Teil von Mehrheiten unbeweglicher Sachen, die aufgrund eines übergeordneten Bezugs Kulturdenkmäler sind, ohne dass jeder einzelne Bestandteil die Voraussetzungen des Satzes 1 erfüllen muss (Ensembles), wie Orts-, und Platzgefüge, Siedlungen oder Straßenzüge (§ 2 Absatz 2 Nr. 2 DSchG).

WMS Kulturdenkmale Land Bremen

Dieser Darstellungsdienst (WMS) stellt Daten zum INSPIRE-Thema Schutzgebiete in der Freien Hansestadt Bremen (FHB) dar. Der Dienst umfasst die Einzeldenkmäler, die Ensembles und die Bestandteile in Ensembles. - Dieser Dienst ist in der Bearbeitung und zurzeit nicht funktionstüchtig. -

Welterbe Montanregion Erzgebirge - Krušnohoří

Die Daten stellen die zum Welterbe Montanregion Erzgebirge/Krušnohoří gehörenden Bestandteile dar. Von insgesamt 22 Bestandteilen befinden sich 17 auf deutscher und fünf auf tschechischer Seite. Die ausgewählten Denkmale, Natur- und Kulturlandschaften repräsentieren in ihrer Gesamtheit die wichtigsten Bergbaugebiete und Epochen des sächsisch-böhmischen Erzbergbaus. Jeder Bestandteil setzt sich aus verschiedenen Einzelobjekten bzw. Landschaften zusammen. Zusätzlich enthalten sind weitere Standorte als "assoziierte Objekte", die zu einer umfassenden Vermittlung des montanhistorischen Erbes beitragen.

14C content of specific organic compounds in subsoils

Das Projekt "14C content of specific organic compounds in subsoils" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Organic matter (OM) composition and dynamic in subsoils is thought to be significantly different from those in surface soils. This has been suggested by increasing apparent 14C ages of bulk soil OM with depth suggesting that the amount of fresh, more easily degradable components is declining. Compositional changes have been inferred from declining ä13C values and C/N ratios indicative for stronger OM transformation. Beside these bulk OM data more specific results on OM composition and preservation mechanisms are very limited but modelling studies and results from incubation experiments suggest the presence and mineralization of younger, 'reactive carbon pool in subsoils. Less refractory OM components may be protected against degradation by interaction with soil mineral particles and within aggregates as suggested by the very limited number of more specific OM analysis e.g., identification of organic compound in soil fractions. The objective of this project is to characterize the composition, transformation, stabilization and bioavailability of OM in subsurface horizons on the molecular level: 1) major sources and compositional changes with depth will be identified by analysis of different lipid compound classes in surface and subsoil horizons, 2) the origin and stabilization of 'reactive OM will be revealed by lipid distributions and 14C values of soil fractions and of selected plant-specific lipids, and 3) organic substrates metabolized by microbial communities in subsoils are identified by distributional and 14C analysis of microbial membrane lipids. Besides detailed analyses of three soil profiles at the subsoil observatory site (Grinderwald), information on regional variability will be gained from analyses of soil profiles at sites with different parent material.

Trophic interactions in the soil of rice-rice and rice-maize cropping systems

Das Projekt "Trophic interactions in the soil of rice-rice and rice-maize cropping systems" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Allgemeine und Spezielle Zoologie, Bereich Tierökologie und Spezielle Biologie durchgeführt. Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

Das Projekt "Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut, Arbeitsgruppe Bodenkunde und Bodenökologie durchgeführt. We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

Flowering time, development and yield in oilseed rape (Brassica napus): Sequence diversity in regulatory genes

Das Projekt "Flowering time, development and yield in oilseed rape (Brassica napus): Sequence diversity in regulatory genes" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Pflanzenbau und Pflanzenzüchtung I, Professur für Pflanzenzüchtung durchgeführt. Flowering time (FTi) genes play a key role as regulators of complex gene expression networks, and the influence of these networks on other complex systems means that FTi gene expression triggers a cascade of regulatory effects with a broad global effect on plant development. Hence, allelic and expression differences in FTi genes can play a central role in phenotypic variation throughput the plant lifecycle. A prime example for this is found in Brassica napus, a phenotypically and genetically diverse species with enormous variation in vernalisation requirement and flowering traits. The species includes oilseed rape (canola), one of the most important oilseed crops worldwide. Previously we have identified QTL clusters related to plant development, seed yield and heterosis in winter oilseed rape that seem to be conserved in diverse genetic backgrounds. We suspect that these QTL are controlled by global regulatory genes that influence numerous traits at different developmental stages. Interestingly, many of the QTL clusters for yield and biomass heterosis appear to correspond to the positions of meta-QTL for FTi in spring-type and/or winter-type B. napus. Based on the hypothesis that diversity in FTi genes has a key influence on plant development and yield, the aim of this study is a detailed analysis of DNA sequence variation in regulatory FTi genes in B. napus, combined with an investigation of associations between FTi gene haplotypes, developmental traits, yield components and seed yield.

Revision of basal sauropods from the Middle Jurassic of Patagonia and the early evolution of eusauropods

Das Projekt "Revision of basal sauropods from the Middle Jurassic of Patagonia and the early evolution of eusauropods" wird vom Umweltbundesamt gefördert und von Generaldirektion der Staatlichen Naturwissenschaftlichen Sammlung Bayerns, Bayerische Staatssammlung für Paläontologie und Geologie durchgeführt. Sauropod dinosaurs represent one of the most important components of Mesozoic terrestrial vertebrate faunas, yet their early evolution and diversification in the Jurassic is still poorly understood. Furthermore, most of the pertinent data so far comes from Early and Middle Jurassic rocks in eastern Asia. The only abundant basal sauropod material reported from the Western Hemisphere so far comes from the Middle Jurassic Cañadón Asfalto Formation of Chubut province, Argentina, from where two species, Patagosaurus fariasi and Volkheimeria chubutensis, have been described. Especially the first of these taxa has figured prominently in basal sauropod phylogenies. However, recent research suggests that more sauropods are represented in the original material referred to this species, and intensive fieldwork in the rocks that have yielded these materials has resulted in the recovery of a wealth of new material. Thus, the objective of this project is a revision of the original materials of Patagosaurus as well as an incorporation of new materials. The alpha taxonomy of the sauropods from the Cañadón Asfalto Formation will be established, detailed osteological descriptions of the different taxa provided and their significance for our understanding of early sauropod evolution will be evaluated.

Biogeochemical interface formation in soils as controlled by different components

Das Projekt "Biogeochemical interface formation in soils as controlled by different components" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Bodenkunde durchgeführt. We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.

Unravelling the role of an autonomous pathway component in FTi control in Arabidopsis and barley

Das Projekt "Unravelling the role of an autonomous pathway component in FTi control in Arabidopsis and barley" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Lehrstuhl für Molekulare Zellphysiologie und Endokrinologie durchgeführt. We will compare the role of an RNA-binding protein in floral transition in Arabidopsis thaliana and Hordeum vulgare. The RNA-binding protein AtGRP7 promotes floral transition mainly by downregulating the floral repressor FLC via the autonomous pathway. Based on our observation that AtGRP7 affects the steady-state abundance of a suite of microRNA precursors, we will globally compare the small RNA component of the transcriptome during FTi regulation in wild type plants and AtGRP7 overexpressors by deep sequencing. This will extend the knowledge on small RNAs associated with floral transition and provide insights into the regulatory network downstream of this RNA-binding protein. Further, we will address the question how AtGRP7 orthologues function in crop species lacking FLC homologues. A barley line with highly elevated levels of the AtGRP7 orthologue HvGR-RBP1 shows accelerated FTi and preanthesis development when compared to a near-isogenic parent with very low expression of this gene. We will characterize in detail flowering of this line with respect to different photoperiods and its vernalization requirement. We will employ a TILLING approach to further delineate the function of HvGR-RBP1 in flowering. A candidate gene approach to identify downstream targets will provide insights into the signaling pathways through which HvGR-RBP1 influences FTi. This project contributes to the development of a functional cross-species network of FTi regulators, the major strategic aim of the SPP.

1 2 3 4 518 19 20