Das Projekt "Bioökonomie International 2016: Integrierte Bernsteinsäureproduktion durch Nutzung von Xylose aus Lignocellulose und Kohlendioxid aus Biogas und Ethanolfermentation" wird vom Umweltbundesamt gefördert und von Prüf- und Forschungsinstitut Pirmasens e.V. durchgeführt. Ziel des Projekts ist die Entwicklung einer fermentativen Bernsteinsäureproduktion in der Bakterien CO2 fixieren und Xylose als Kohlenstoffquelle (aus Weizenstroh oder Maisfasern) nutzen. Biogas und CO2 aus der Bioethanolfermentation dienen als CO2-Quellen. Biogas besteht zu 40 % aus CO2 und ca. 60 % aus CH4, während der Gasstrom aus der Bioethanolproduktion reines CO2 ist. Um Biogas im Erdgasnetz zu speichern bedarf es einer Abtrennung des CO2. Dieses in Bernsteinsäure zu überführen dient also auch der Aufreinigung des Biogases zum Einspeisen. Die Nutzung von Lignocellulosen Rohstoffen für die Bioökonomie kann über unterschiedliche Wege geschehen. Eine thermochemische Vorbehandlung führt zur Hydrolyse von Xylan, dem Hauptbestandteil der Hemicellulose. Die entstehende Xylose steht dann zur weiteren Nutzung zur Verfügung. Durch SucciniGas lässt sich die Bernsteinsäureproduktion in Bioraffinerien und Biogasanlagen integrieren, wodurch Synergieeffekte ausgenutzt werden können.
Das Projekt "Teilvorhaben 1: Synthese Lignin-basierter Polyether und Polyester als Bindemittel für Offset-Druckfarben" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut durchgeführt. Im Rahmen dieses Teilprojektes werden neuartige Lignin-basierte Polyether und Polyester entwickelt, die als Kolophonium-freie Bindemittelkomponente für Rollenoffset-Druckfarben verwendet werden sollen. Dabei wird ein Fokus auf die Modifikation von technisch verfügbarem Kraft-Lignin und Soda-Lignin gelegt, welches kommerziell in großen Mengen verfügbar ist und derzeit nur thermisch genutzt wird. Das Fraunhofer WKI wird sich während des Projekts auf die Synthese Lignin-basierter Polyether und Polyester konzentrieren, wobei der Schwerpunkt auf den Polyethersynthesen liegen wird. Für die Lignin-basierten Polyether ist vorgesehen die OH-Gruppen des Lignins entweder mit Polyglykolethern oder mit Glycidylestern der Kochsäuren umzusetzen. Durch diese beiden Synthesewege können so Lignin-basierte Polyether mit einer unterschiedlichen Hydrophobie synthetisiert werden und so auf die Bindemittelanforderung des Rollenoffset-Drucks eingestellt werden. Bei den Lignin-basierten Polyestern wird das Lignin mit Diolen und Disäuren umgesetzt, um so die OH-Gruppen zu verestern. In Absprache mit Worlée Chemie wird das Fraunhofer WKI den Schwerpunkt auf zähe Polyester legen. Dabei sollen vor allem bio-basierte Komponenten verwendet werden. Hier kommen unter anderem 1,3-Propandiol, Glycerin, Bernsteinsäure und Isosorbid in Frage. So können Bindemittel mit einem hohen Anteil an nachwachsenden Rohstoffen synthetisiert werden. Des Weiteren wird das Fraunhofer WKI zusammen mit den Projektpartnern eine gründliche Studie der Struktur-Eigenschaftsbeziehungen durchführen, um so die Materialeigenschaften der Polyester an den Rollenoffset-Druck anpassen zu können.
Das Projekt "Biotechnische Herstellung von Bernsteinsäure aus Reststoffen der Landwirtschaft (BIOBST)" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Agrartechnologie durchgeführt. Ziel des beantragten Projektes ist die Entwicklung und Bewertung eines neuartigen und wirtschaftlichen Verfahrens zur biotechnischen Herstellung von Bernsteinsäure (succinic acid, SA) aus Reststoffen der Landwirtschaft wie z.B. Kaff, Stroh, Melassen, Glycerin, Pressrückständen und ä. Der Antragsteller besitzt ein bisher nicht beschriebenes Bakterium (AKR177), das sowohl (mikro-)aerob als auch anaerob mit unterschiedlichsten Substraten wächst bzw. Bernsteinsäure in hoher Ausbeute bildet. Das Bakterium ist anspruchslos, sehr robust und sehr gut lagerfähig. In Vorversuchen wurden unter nicht optimierten Bedingungen bereits vielversprechende Ergebnisse erhalten. Die Zelle ist daher hochinteressant für die industrielle Verwendung komplexer Substrate, wie Reststoffe der Landwirtschaft oder nachgeschalteter Industriebereiche. Es ist beabsichtigt die Wachstums- und Produktionsbedingungen so zu optimieren, dass eine Bernsteinsäure-Konzentration deutlich über 100 g/L erreicht wird, die Nebenprodukte (Lactat und Acetat) unter 5 g/L und die Produktivitäten deutlich über 2 g/(L-h) liegen. Hierzu sollen verschiedene Strategien genutzt werden. - Optimierung der Biomasseproduktion, um unter möglichst einfachen Bedingungen mit preiswerten Medien hochaktive Biokatalysatoren zu erhalten. - Einsatz der konzentrierten Biomasse zur Bernsteinsäure-Produktion unter optimierten Produktionsbedingungen, d. h. Einsatz preiswerter Medienkomponenten und Betriebsmittel, Wiederverwertung der Biomasse, geringe Nebenprodukte, leichte Aufarbeitung. - Untersuchung und Vergleich von Batch-, Fedbatch-, repeated Batch- und kontinuierlichen Produktionsverfahren, sowie von immobilisierten Zellen oder Zellrückführungsverfahren. -Taxonomische Einordnung und genetische Charakterisierung des Produktionsstammes, sowie Nutzung der gewonnenen Ergebnisse zur Stamm- und Prozessoptimierung.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von ThyssenKrupp Industrial Solutions AG durchgeführt. Siehe Antrag: Im Rahmen des Gesamtprojektes sollen durch ThyssenKrupp Industrial Solutions die Pentose- und Hexosehaltigen Hydrolysate des Organosolvverfahrens auf ihre Eignung als Fermentationssubstrate zur Herstellung organischer Säuren (Milchsäure, Bernsteinsäure) getestet werden. Dadurch soll eine Mindest-Spezifikation für diese Hydrolysate entwickelt werden mit dem Ziel später breiteren Zugang zu kostengünstigen Kohlenstoffquellen zu erlangen. Zuerst sollen Vorversuche zur prinzipiellen Verwertbarkeit mit den bereitgestellten Hydrolysaten auf vorhanden Milch- und Bernsteinsäureproduzenten getestet werden. Hierfür sind im Wesentlichen Tests im Schüttelkolben sowie 1L-Parallelreaktorsystem vorgesehen. Geeignete Kombinationen aus Hydrolysat und Stämmen sollen dann einer Fermentationsoptimierung unterzogen werden welche abschließend bis in den 250L-Maßstab überführt werden soll.
Das Projekt "IBÖ-02: BvB - Bioelektrische Herstellung von Bernsteinsäure" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Ziel des Vorhabens ist die Entwicklung eines neuen bioelektrischen Verfahrens zur fermentativen Herstellung von Bernsteinsäure. Der biochemische Prozess wird hierbei mit einem elektrochemischen verknüpft, wobei in einer bioelektrochemischen Zelle kathodenseitig zusätzliche Elektronen für die biochemische Synthese von Bernsteinsäure aus organischen Substraten bereitgestellt werden. Die Ausbeute an Bernsteinsäure soll mit diesem Prozess erhöht und die Bildung oxidierter Nebenprodukte wie Essigsäure minimiert werden. Der aktuelle Kenntnisstand zur bioelektrischen Herstellung von organischen Säuren wird im Rahmen von Literatur- und Patentrecherchen ermittelt. Zur potenziellen Plattformchemikalie Bernsteinsäure wird eine Marktrecherche durchgeführt und das Optimierungspotenzial der fermentativen Produktion mit Hilfe der Elektrobiosynthese herausgearbeitet. Aufbauend auf den Rechercheergebnissen werden eine Fermentationsanlage und eine elektrochemische Zelle im Labormaßstab aufgebaut. Die Laboranlage wird zur Erprobung der bioelektrischen Herstellung von Bernsteinsäure mit dem anaeroben Bakterium Anaerobiospirillum succiniciproducens eingesetzt. Auf der Anodenseite der Zelle werden Elektronen mittels einer elektrolytischen Wasserspaltung freigesetzt. Auf der Kathodenseite wird die fermentative Produktion der Bernsteinsäure aus organischen Substraten durchgeführt, wobei eine Aufnahme der Elektronen durch die Bakterien erfolgen soll. Zur Unterstützung der Elektronenübertragung auf die Bakterien wird zusätzlich der Einsatz von Mediatoren untersucht. Die Ausbeute und das Spektrum der produzierten Säuren werden mit einer konventionellen Fermentation ohne Elektronenzufuhr verglichen. Die Ergebnisse werden einem noch auszuwählenden Expertengremium vorgestellt, um Partner für die weitere Entwicklung des Verfahrens in der Machbarkeitsphase zu gewinnen.
Das Projekt "C,H - Carboxylierung von Acetylen mit CO2 und anschließender Hydrierung der Propiolsäure: Ein klimafreundlicher Zugang zu C4-Grundchemikalien" wird vom Umweltbundesamt gefördert und von Technische Universität Kaiserslautern, Fachbereich Chemie, Lehrgebiet Organische Chemie, Arbeitsgruppe Lukas Gooßen durchgeführt. Das Ziel des Promotionsvorhabens ist die rationale Entwicklung einer nachhaltigen, abfallminimierten und umweltfreundlichen Methode zur Synthese der C4-Grundchemikalien Bernsteinsäure und Butan-1,4-diol ausgehend aus Acetylendicarbonsäure. Als Grundlage für die Entwicklungsarbeiten soll ein in meiner Diplomarbeit entwickeltes Katalysatorsystem für die doppelte Carboxylierung von Acetylen zur Acetylendicarbonsäure dienen. Anschließend soll ein weiteres Katalysatorsystem entwickelt werden, das die Dreifachbindung zum thermisch stabilen Dicarboxylat reduziert und die Bernsteinsäure beim Erhitzen freisetzt. Alternativ dazu soll untersucht werden, ob die komplette Reduktion der Acetylendicarbonsäure bis hin zur Grundchemikalie Butan-1,4-diol in Gegenwart einer milden Base möglich ist. Die Aminbase soll mit Hilfe einer Destillation vom Produkt abgetrennt und in den Prozess zurückgeführt werden, so dass die Gesamtreaktion als einziges Nebenprodukt Wasser freisetzen würde.
Das Projekt "Synthese, Charakterisierung und Einsatz von neuen stationären Phasen für die potentialkontrollierte Flüssigchromatografie in der weißen Biotechnologie" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Im Rahmen dieses Projektes soll durch die Zusammenarbeit zwischen Biotechnologen, Ingenieuren und (Elektro-) chemikern in komplementär ausgerichteten Forschungsstellen neue (bio-) elektrochemische Verfahren zur Aufreinigung von Wertstoffen aus Fermentationslösungen entwickelt und eingesetzt werden. Vorarbeiten haben das Anwendungspotential der potentialkontrollierten Flüssigchromatografie (PKFC) an nicht-modifiziertem Glaskohlenstoff gezeigt. Um mit den klassischen technischen Verfahren konkurrieren zu können, sollen weitere konduktive, stationäre Phasen für die PKFC synthetisiert, charakterisiert und am Beispiel der Bernstein- und Milchsäureproduktion evaluiert werden. Um bei dieser Neuentwicklung die Trenneffizienz und Kapazität zu verbessern, sollen konduktive Matrices mit anderen leitfähigen (derivatisierten) Materialien kombiniert werden. Zusammen mit unseren Projektpartnern der TU München und des Karlsruher Institut für Technologie (KIT) sollen für ein tieferes Verständnis und eine effektive Optimierung, die Vorgänge der potentialkontrollierten Ad- und Desorption von der molekularen Ebene bis hin zu kompletten Chromatografiesäulen untersucht und durch geeignete Modellvorstellungen beschreiben werden.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von GEA Westfalia Separator Group GmbH durchgeführt. Ziel ist es, ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen. Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösungsmittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierter Materialien) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozeßschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozesschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs-und Industriepartner in Deutschland.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von PlanET Biogastechnik GmbH durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.
Origin | Count |
---|---|
Bund | 15 |
Type | Count |
---|---|
Förderprogramm | 15 |
License | Count |
---|---|
offen | 15 |
Language | Count |
---|---|
Deutsch | 14 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 6 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 14 |
Lebewesen & Lebensräume | 14 |
Luft | 8 |
Mensch & Umwelt | 15 |
Wasser | 5 |
Weitere | 15 |