API src

Found 487 results.

Biogas production by treating sludge of a waste water treatment plant

Das Projekt "Biogas production by treating sludge of a waste water treatment plant" wird vom Umweltbundesamt gefördert und von Schwarting-Uhde GmbH Umwelt- und Bioverfahrenstechnik durchgeführt. Objective: The subdivized project is concerned with the establishement and demonstration operation of a plant for gaining biogas from the sludge of a communal sewage plant and utilizing it to create electrical and thermal energy. By the process of gaining energy from the biological degradation of the organic substances of the sewage sludge, the corresponding amount of primary energy can be substitutes. At the same time, the quantity of dry matter for disposal is reduced by about 50 per cent. The sludge treated in this way can then be both deposited and used for recultivation. The aim of demonstration operation was to confirm and improve the turnover rates achieved in extensive preliminary investigations for microbial methane production from the sewage sludge of a communal sewage plant. General Information: The demonstration plant was based on the Schwarting/Udhe process. To ensure a high degradation rate even in peak load periods, this process operates in two successive stages. Moreover, it does not use fully mixed fermenters, but narrow standing containers. In these containers, there is a defined slug flow in which the necessary contact between the substrate and the biomass is created by a patented phase mixing system. In the degradation of communal sewage sludge in conventional single-stage plants, only 20-30 per cent of the dry organic matter could be converted to biomass. In extensive preliminary investigations carried out in cooperation with the Fraunhofer Institute for contact surface and bio-process technology, a modified variant of the Schwarting/Udhe process was developed which permits degradation rates of 50-60 per cent of the dry organic matter. Simultaneously, the residences time of 25-30 days in conventional singel-stage fermenters has been reduced considerably. Achievements: The installation for the 2-stage fermentation of sewage sludge, which was to be established in accordance with the project description, was constructed in 1993/94 after planning work in 1992/93, and it was taken into operation by September 1994. Demonstration operation of the plant was carried out from Oct.94 to Dec.95. For external reasons, the installation could only be operated in the difficult partial load area with extraordinary fluctuations in the intake volume and intake concentration during this period. In spite of the sometimes difficult operation under partial load, the plant shows a below average amount of wear. Up to now, only the explicit wearing parts have had to be replaced, and as a rule, even these parts had exceeded the anticipated service life. However, the components used were cheked and optimized in intensive cooperation with the operator with respect to their use; permanent operation under full load is possible without any restrictions. The device planned for holding back biomass in the second fermentation stage, which was implemented for the first time in this project, has shown its functionality. As anticipated, the degree of...

Transport and fate of contaminants (WP EXPO 2)

Das Projekt "Transport and fate of contaminants (WP EXPO 2)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. Transport processes: The behaviour of contaminants in the water and sediments in river basins cannot be studied without taking into account the relevant processes in the basins and the boundaries with the upstream river system and the coastal region. The rivers that flow into these coastal areas take a considerable amount of contaminated sediments which are stored for longer or shorter periods in these estuaries. Retention of sediments will take place in the low-energy areas such as the smaller tributaries in the river basin. Within this work package various empirical formulations and characteristics will be defined that typically determine the sediment retention (e.g. hydraulic load and specific runoff). The estuarine regions of a river basin represent a diverse and complex water system. The tidal motion and the density currents induced by the change from fresh to saltwater are of particular importance in describing the water quality of estuaries. In the estuary strong intrusion of saltwater landward and current reversal might occur. The coastal area is characterised by the typical oscillations of the tidal movement and has a complicated current structure resulting from the horizontal intrusion of saline water and vertical stratification due to density differences. It is obvious that the estimation of the time and spatial behaviour of the exposure of contaminants in estuaries is complicated by the effects of tidal motion and chemical behaviour. In order to have an accurate description of the fate and distribution of contaminants in estuarine regions, a carefully analysis of model concepts and implementation is needed in this work package to assess the degree of complexity and valid merging of process formulations. Bio-chemical fate processes: Besides transport processes compounds are subject to many distribution and transformation processes or reactions which determine the exposure of contaminants within a river basin. Physico-chemical processes such as sorption, partitioning and evaporation determine the distribution between the water, air and particulate phases. Most compounds are subjected to transformation or degradation reactions, such as hydrolysis, photo-degradation, redox reactions and degradation by micro-organisms. The significance of degradation processes may vary with depth. For several compounds degradation is most prominent in the upper water layers, due to photo-degradation. Biodegradation rates in the lower water column are assumed to be lower. In anoxic sediments, biodegradation rates usually are much slower than in the water column. Many trace metals and persistent organic compounds are strongly bound to particulate phases or dissolved organic material or in the case of trace metals bound to inorganic and organic ligands. Usually only a limited fraction of a specific compound is present in a truly free dissolved state and available for uptake by aquatic organisms. usw.

Teilprojekt des MPI für Biogeochemie

Das Projekt "Teilprojekt des MPI für Biogeochemie" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. SOPRAN (Surface Ocean Processes in the Anthropocence: www.sopran.pangaea.de) ist ein deutscher Beitrag zu SOLAS (Surface Ocean - Lower Atmosphere Study: www.solas-int.org). Die 1. Phase von SOPRAN wurde vom BMBF vom 1. Februar 2007 bis 31. Januar 2010 gefördert. Dabei waren 9 Teilprojektleiter von lFM-GEOMAR in 7 Teilprojekten (TP) involviert. Die TP waren Teil der 4 übergreifenden SOPRAN-Themen: (i) Die Antwort des Ozeans auf den Eintrag von Staub, (ii) Der Effekt von hohen CO2 auf marine Ökosysteme und Spurengasemissionen, (iii) Produktion und Emissionen von strahlungsaktiven und chemisch reaktiven Gasen im tropischen Atlantik, (iv) Phasenübergänge an der Ozeanoberfläche. In SOPRAN I wurden beträchtliche Anstrengungen zum Aufbau und Nutzung von gemeinsamen Infrastrukturen für Ozean/Atmosphäre-Studien, unternommen. Z.B. wurden erstmals freitreibende Mesokosmen (KieI-KOSMOS) entwickelt und eingesetzt. Darüber hinaus wurde die Infrastruktur des Kapverden Observatoriums weiterentwickelt und zwei Schiffskampagnen in den tropischen Nordostatlantik durchgeführt. SOPRAN hat auch die BIOCAT (Biogeochemical Interactions between the Ocean and the Atmosphere) Summer School (Kiel, September 2008) initiiert und durchgeführt. Erste Ergebnisse aus den verschiedenen SOPRAN TP wurden bei den SOPRAN Jahrestreffen in Kiel (2009) und Warnemünde (2008) präsentiert. Die Posterzusammenfassungen und ein ausführlicher SOPRAN Zwischenbericht können über den Link 'Meetings/Events' auf der SOPRAN Webseite runtergeladen werden.

Partner D

Das Projekt "Partner D" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Umwelttechnik und Energiewirtschaft V-9 durchgeführt. Durch effiziente Umwandlung der Biomasse in integrierten Bioraffinerien können Pflanzen und biologische Abfallstoffe in ihrer Multifunktionalität als Energie- und Rohstofflieferanten nutzbar gemacht werden. Eine der Schlüsselaufgaben ist dabei die Nutzung einer möglichst großen Anzahl der in Lignocellulose enthaltenden Rohstoffe. Lignocellulose umfasst die drei Stoffgruppen Hemicellulose, Cellulose und Lignin, die sich in ihrem Reaktionsverhalten erheblich unterscheiden. Das zentrale technologische Anliegen im Modul II von BIORAFFINERIE2021-Phase I war der Aufschluss der Lignocellulose und die Abtrennung der Hydrolyse- und Fermentationsprodukte mit umweltfreundlichen bzw. umweltneutralen Hilfsmitteln (Wasser, Hochdruck, Temperatur, Biokatalysatoren) zu Einfachzuckern und weiteren Chemikalien. Es wurde eine Gesamtkette zur Produktion von Bioethanol realisiert. Während des Projektfortschritts hat sich herausgestellt, dass ein besonderes industrielles Interesse an der Nutzung des anfallenden Lignins besteht. Lignin ist nach der Cellulose das mengenmäßig wichtigste organische Polymer auf der Erde und macht 30Prozent des nicht-fossilen organischen Kohlenstoffes aus. Generelles Ziel von BIORAFFINERIE2021-Phase II 'Erweiterung der nutzbaren Biomasseressourcen' ist die Optimierung des Gesamtprozesses der Lignocellulose-basierten Bioraffinerie zur Gewinnung der Wertstoffe Lignin und Xylose. Aufbauend auf den im bisherigen Projektverlauf gewonnenen Ergebnissen hier die Produktion und experimentelle Untersuchung von Lignin für den Einsatz in Klebemassen im Vordergrund stehen.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Technische Universität München, Lehrstuhl für Pflanzenernährung durchgeführt. Übergreifendes Ziel ist die Verbesserung der wissenschaftlichen Grundlagen zur Erhöhung der P Effizienz in landwirtschaftlichen Böden bei Erhalt ihrer P-Fruchtbarkeit und unter Einsatz neuer Technologien. WP1.3 beschäftigt sich mit der Identifizierung von Mikroorganismen, die die Mobilisierung von P katalysieren und deren Einfluss auf andere Nährstoffkreisläufe. Ferner soll die Rolle von Mikroorganismen als labiler (leicht verfügbarer P Speicher) untersucht werden. WP2.1 befasst sich mit einer langfristig nachhaltigen Nutzung der P-Reserven von Böden und damit der Einsparung mineralischer P-Quellen. Basis sind bis zu 40-jährige Langzeitfeldexperimente sowie Versuche in landwirtschaftlichen Betrieben, die die standortspezifische Wirkung einer P-Düngung prüfen und mit Hilfe von Standortdaten zur P-Dynamik bewerten und interpretieren. Die Erfassung von Pflanzen- und Bodenparametern geschieht mit Hilfe modernster Nah- und Fernerkundungssensoriken.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Abteilung Zellbiologie der Pflanze durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Büsgen-Institut, Abteilung Forstbotanik und Baumphysiologie durchgeführt. Pappeln werden in Kurzumtriebsplantagen (KUP) für die Produktion von Bioenergie angebaut. Während der gesamten Zeit ist die Plantage Pilzerregern ausgesetzt, die schwere Schäden an den Bäumen verursachen können. Die meisten der schädlichen Pilzerreger bei der Pappel sind biotrophe Rostpilze der Gattung Melampsora. Die kosmopolitische Art Melampsora larici-populina stellt die größte Bedrohung für Pappelplantagen dar, da sie jährlich Wachstumseinbußen von bis zu 50 Prozent verursacht. Pflanzen erkennen Pilze über Rezeptoren, die das Pathogen-assoziierte molekulare Muster ('pathogen-associated molecular pattern'; PAMP) Chitin als Ligand binden. Wesentliche Bestandteile dieser Chitin-Rezeptoren sind 'Lysin-Motif-Receptor-Like-Kinasen' (LysM-RLKs). Analysen der Chitin-Signalkette in dikotyledonen Pflanzen zeigen, dass enzymatisch aktive und inaktive LysM-RLKs miteinander interagieren müssen, um einen funktionellen Rezeptor zu bilden. Die Wahrnehmung des Chitins löst in Pflanzen eine Immunantwort aus, die zu einer Resistenz gegen den Eindringling führen kann. Auf der anderen Seite müssen pilzliche Symbionten diese Immunantwort umgehen oder unterdrücken, um die Etablierung einer Mykorrhizierung zu erreichen. In dieser Hinsicht könnten LysM-Effektoren als Modulatoren der pflanzliche Immunantwort eine Rolle spielen. Ferner wird die Kommunikation zwischen der Pflanze und dem Mykorrhizapilz durch pilzliche Myc-Faktoren erleichtert, die von LysM-Rezeptoren des Wirts wahrgenommen werden. Das Ziel des beantragten Projekts ist es, LysM-RLK-Gene in Pappeln und LysM-Effektor-Gene in dem Mykorrhiza-Pilz Laccaria bicolor zu identifizieren. Diese Gene sollen funktionell charakterisiert werden, um dann ausgewählte Gene für die Verbesserung von Pathogenresistenz und Mykorrhizierung zu nutzen. Zu diesem Zweck werden transgene Linien hergestellt. Zusätzlich ist geplant CRISPR/Cas9 zur Genom-Editierung zu verwenden.

Teilprojekt des Forschungszentrums Geesthacht GmbH

Das Projekt "Teilprojekt des Forschungszentrums Geesthacht GmbH" wird vom Umweltbundesamt gefördert und von GKSS-Forschungszentrum Geesthacht GmbH - Institut für Küstenforschung durchgeführt. SOPRAN (Surface Ocean Processes in the Anthropocence: www.sopran.pangaea.de) ist ein deutscher Beitrag zu SOLAS (Surface Ocean - Lower Atmosphere Study: www.solas-int.org). Die 1. Phase von SOPRAN wurde vom BMBF vom 1. Februar 2007 bis 31. Januar 2010 gefördert. Dabei waren 9 Teilprojektleiter von lFM-GEOMAR in 7 Teilprojekten (TP) involviert. Die TP waren Teil der 4 übergreifenden SOPRAN-Themen: (i) Die Antwort des Ozeans auf den Eintrag von Staub, (ii) Der Effekt von hohen CO2 auf marine Ökosysteme und Spurengasemissionen, (iii) Produktion und Emissionen von strahlungsaktiven und chemisch reaktiven Gasen im tropischen Atlantik, (iv) Phasenübergänge an der Ozeanoberfläche. In SOPRAN I wurden beträchtliche Anstrengungen zum Aufbau und Nutzung von gemeinsamen Infrastrukturen für Ozean/Atmosphäre-Studien, unternommen. Z.B. wurden erstmals freitreibende Mesokosmen (KieI-KOSMOS) entwickelt und eingesetzt. Darüber hinaus wurde die Infrastruktur des Kapverden Observatoriums weiterentwickelt und zwei Schiffskampagnen in den tropischen Nordostatlantik durchgeführt. SOPRAN hat auch die BIOCAT (Biogeochemical Interactions between the Ocean and the Atmosphere) Summer School (Kiel, September 2008) initiiert und durchgeführt. Erste Ergebnisse aus den verschiedenen SOPRAN TP wurden bei den SOPRAN Jahrestreffen in Kiel (2009) und Warnemünde (2008) präsentiert. Die Posterzusammenfassungen und ein ausführlicher SOPRAN Zwischenbericht können über den Link 'Meetings/Events' auf der SOPRAN Webseite runtergeladen werden.

Teilprojekt des Instituts für Troposphärenforschung e.V

Das Projekt "Teilprojekt des Instituts für Troposphärenforschung e.V" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. SOPRAN (Surface Ocean Processes in the Anthropocence: www.sopran.pangaea.de) ist ein deutscher Beitrag zu SOLAS (Surface Ocean - Lower Atmosphere Study: www.solas-int.org). Die 1. Phase von SOPRAN wurde vom BMBF vom 1. Februar 2007 bis 31. Januar 2010 gefördert. Dabei waren 9 Teilprojektleiter von lFM-GEOMAR in 7 Teilprojekten (TP) involviert. Die TP waren Teil der 4 übergreifenden SOPRAN-Themen: (i) Die Antwort des Ozeans auf den Eintrag von Staub, (ii) Der Effekt von hohen CO2 auf marine Ökosysteme und Spurengasemissionen, (iii) Produktion und Emissionen von strahlungsaktiven und chemisch reaktiven Gasen im tropischen Atlantik, (iv) Phasenübergänge an der Ozeanoberfläche. In SOPRAN I wurden beträchtliche Anstrengungen zum Aufbau und Nutzung von gemeinsamen Infrastrukturen für Ozean/Atmosphäre-Studien, unternommen. Z.B. wurden erstmals freitreibende Mesokosmen (KieI-KOSMOS) entwickelt und eingesetzt. Darüber hinaus wurde die Infrastruktur des Kapverden Observatoriums weiterentwickelt und zwei Schiffskampagnen in den tropischen Nordostatlantik durchgeführt. SOPRAN hat auch die BIOCAT (Biogeochemical Interactions between the Ocean and the Atmosphere) Summer School (Kiel, September 2008) initiiert und durchgeführt. Erste Ergebnisse aus den verschiedenen SOPRAN TP wurden bei den SOPRAN Jahrestreffen in Kiel (2009) und Warnemünde (2008) präsentiert. Die Posterzusammenfassungen und ein ausführlicher SOPRAN Zwischenbericht können über den Link 'Meetings/Events' auf der SOPRAN Webseite runtergeladen werden.

1 2 3 4 547 48 49