API src

Found 12 results.

Related terms

Wissenschaftliche Begleitforschung und Monitoring des EnBW-Neubaus Biberach und Messprogramm für die Erdwärmeheizung

Das Projekt "Wissenschaftliche Begleitforschung und Monitoring des EnBW-Neubaus Biberach und Messprogramm für die Erdwärmeheizung" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Gebäude- und Energiesysteme durchgeführt. Das neue Verwaltungsgebäude der EnBW in Biberach verfügt über ein Erdwärmesondenfeld mit 36 Sonden, welches über eine Wärmepumpe die Betonkerntemperierung im Gebäude mit Grundlastwärme versorgt und im Sommer direkt geothermisch kühlt. Spitzenlasten des Wärmebedarfs werden von Gaskesseln abgedeckt. Der Neubau dient für die EnBW Regional AG als Referenz vor Ort für kommunale Verwaltungsgebäude ihrer Kunden, weil in derartigen Gebäudekonzepten ein großes Energieeffizienzpotenzial liegt. Die Umsetzung dieses Potenzials hangt insbesondere von einer auf das Konzept angepassten und optimierten Betriebsweise der Anlagentechnik ab - ein Bereich, der nach wie vor Forschungsbedarf aufweist. Aus diesem Grund wurde die Hochschule Biberach mit einer wissenschaftlichen Begleitung und einem Monitoring des Objekts mit folgenden Inhalten beauftragt: - Gewinnung belastbarer Daten über die Energieverbrauche und die Energieeffizienz des Gebäudes sowie Identifikation und Umsetzung von Optimierungspotenzialen im Gebäudebetrieb - Evaluierung des raumklimatischen Komforts - Schaffung einer Grundlage für eine langfristige Beurteilung des Gebäudebetriebs und des Einflusses der Bauqualitat hierauf, z.B. durch Luftdichtheitsprüfung des großvolumigen Gebäudes - Beurteilung und Überwachung der Nachhaltigkeit der thermischen Bewirtschaftung des Erdwärmesondenfelds durch Thermal Response Tests und Auswertung von Betriebsdaten über einen längeren Zeitraum hinweg.

Teilvorhaben: Koordination, Laborarbeiten und Voruntersuchungen im Feld, sowie Praxistests und Validierung

Das Projekt "Teilvorhaben: Koordination, Laborarbeiten und Voruntersuchungen im Feld, sowie Praxistests und Validierung" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.

Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden

Das Projekt "Entwicklung eines kombinierten Verfahrens aus Akustik und Infrarotthermografie zur quantitativen Evaluation der Luftdichtheit von Gebäudefassaden" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.

Teilvorhaben: Entwicklung eines Ultraschallsenders für die akustische Leckage-Detektion

Das Projekt "Teilvorhaben: Entwicklung eines Ultraschallsenders für die akustische Leckage-Detektion" wird vom Umweltbundesamt gefördert und von SONOTEC GmbH durchgeführt. Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. SONOTEC fokussiert sich im Rahmen des kombinierten Prototyps des Messsystems auf die Entwicklung der Hardware der Ultraschallquelle.

Teilvorhaben: Integriertes Messsystem zur ganzheitlichen Untersuchung von Gebäude-Leckagen

Das Projekt "Teilvorhaben: Integriertes Messsystem zur ganzheitlichen Untersuchung von Gebäude-Leckagen" wird vom Umweltbundesamt gefördert und von Gesellschaft zur Förderung angewandter Informatik e.V. durchgeführt. Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Der Arbeitsschwerpunkt der GFaI liegt in der Entwicklung und Konstruktion des integrierten Messsystems. Hierbei werden akustische Schallquellenlokalisation und Infrarot (IR)-Thermografie miteinander kombiniert, indem eine IR-Kamera in ein GFaI-Mikrofonarray integriert wird. Zusätzlich werden die IR-Messungen und entsprechende kombinierte Auswertetechniken in die Software der akustischen Kamera ('NoiseImage') integriert.

POLYCITY - europäische Energieforschung für Kommunen

Das Projekt "POLYCITY - europäische Energieforschung für Kommunen" wird vom Umweltbundesamt gefördert und von Hochschule für Technik Stuttgart, Zentrum für angewandte Forschung an Fachhochschulen, Nachhaltige Energietechnik - zafh.net durchgeführt. Die Projektgebiete liegen in Deutschland, Italien und Spanien. Deutschland: Scharnhauser Park: In Ostfildern am südlichen Rand von Stuttgart entsteht auf einem ehemaligen amerikanischen Militärgelände der Stadtteil Scharnhauser Park für rund 10.000 Bewohner und mit etwa 2.500 Arbeitsplätzen. Zu rund 80 Prozent soll der Energiebedarf aus erneuerbarer Energie gedeckt werden. Kern des Energiekonzeptes für den Stadtteil ist ein Biomasse-Blockheizkraftwerk mit 1 MW elektrischer und 6 MW thermischer Leistung. Die Anlage wird optimiert, eine Ist-Analyse ist bereits erstellt worden. Mit der im Sommer ungenutzten Wärmeenergie soll künftig Kälte für die Klimatisierung von Gewerbebauten erzeugt werden. Neben der ganzjährigen Nutzung erneuerbarer Energien für die Kraft-Wärme-Kältekopplung ist auch Energiespeicherung (zentral und dezentral) und ein kommunales Energiemanagementsystem auf der Basis modernster Informationstechnologien vorgesehen. Das zafh.net liefert Know-how der simulationsgestützten Regelung von Anlagen und setzt betriebsbegleitende Simulationen ein. In Echtzeit soll aus den klimatischen Randbedingungen der optimale Betriebszustand berechnet und mit den real gemessenen Werten verglichen werden. Als Basis ist ein Geoinformationssystem entwickelt worden, mit dem die Energiedaten der Gebäude erfasst und ausgewertet werden können. Die Gebäude unterliegen einem hohen Dämmstandard (25 Prozent unter den in der Wärmeschutzverordnung 1995 geforderten Werten). Bei den im Projekt neu dazukommenden Wohn- und Gewerbebauten wird der Transmissionswärmeverlust um weitere 20-30 Prozent gesenkt. Die ersten Wohnbauten wurden im Herbst 2005 vom Siedlungswerk Stuttgart erstellt. Mit Argon gefüllte Fenster mit erhöhter Rahmendämmungund Kunststoff-Abstandhaltern erreichen einen Gesamt-Wärmedurchgangskoeffizienten von 1,1 W m-2 K-1. In diesem ersten Bauabschnitt sind reine Abluftanlagen ohne Wärmerückgewinnung installiert worden, in späteren Bauabschnitten sollen Anlagen mit Wärmerückgewinnung einer Vergleichsanalyseunterzogen werden. Die Gebäudedichtigkeit wird mit Blower-Door-Tests experimentell untersucht. Der Energiestandard wird bei allen Bauten dokumentiert. Messgeräte für die Fernauslese und Auswertung (Smartbox) sind bereits installiert. ImGewerbegebiet wird im März 2006 ein erstes Demoprojekt zur innovativen Gebäudetechnologie (Heizung, Lüftung, Klima) mit etwa 4.000 m2 Nutzfläche erstellt. In der Ausführungsplanung enthalten sind: thermische Kühlung, Erdreichwärmetauscher, Betonkernaktivierung (zur Kühlung) ein Unterflurkonvektions-Heiz- und Kühlsystem, ein Tageslicht-Lenksystem. Nicht nur das Biomassekraftwerk liefert Strom, sondern auch gebäudeintegrierte PV-Anlagen. Ziel ist eine Leistung von insgesamt 70 kWp. Zudem wird die kinetische Energie des Wassers genutzt: Das aus den Hochbehältern ins Netz abfließende Trinkwasser treibt eine 80-kW-Entspannungsturbine an.

Untersuchung des Einflusses baulicher Energiesparmaßnahmen (energetische Sanierung, Passivbauweise) auf die Radonkonzentration in Innenräumen - Teilprojekt 2

Das Projekt "Untersuchung des Einflusses baulicher Energiesparmaßnahmen (energetische Sanierung, Passivbauweise) auf die Radonkonzentration in Innenräumen - Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Technische Hochschule Mittelhessen (THM), Institut für Medizinische Physik und Strahlenschutz durchgeführt. Gegenstand der Untersuchung ist die Auswirkung energetischer Gebäudesanierungsmaßnahmen auf die Radonkonzentration in Wohnräumen. Anhand der Ergebnisse kann erkennbar sein, ob und welche Methoden der energetischen Sanierung eine Erhöhung der Radonkonzentration in den Wohnräumen zur Folge haben. Für festgestellte Konzentrationserhöhungen wird mittels der Modellierung der Radonausbreitung ein Konzept zur Verminderung erhöhter Radonkonzentrationen erarbeitet. Zunächst wird eine Übersicht zum Stand von Wissenschaft und Technik für Radon in Wohnhäusern und Radonmesstechnik sowie für Maßnahmen energetischer Sanierungen zusammengestellt. Es folgen zeitaufgelöste Messungen in 4 ausgesuchten Einfamilienhäusern. Erfasst wird die Radonkonzentration in jeweils 2 Räumen aller bewohnten Stockwerke, dem evtl. vorhanden Keller und einer Reihe möglicher Einflussparameter (z. B. meteorologische Daten) jeweils vor und nach einer energetischen Sanierung. Die Sanierungsmaßnahmen sollten unterschiedlich sein, damit einzelne und möglichst vielfältige Maßnahmen beurteilt werden können. Zusätzlich werden Dichtemessungen der Objekte vor und nach der Sanierung mittels eines modifizierten Differenzdruck-Messverfahrens durchgeführt. Ein Schwerpunkt ist die Analyse der Messdaten auf Korrelationen zwischen der Radonkonzentration und anderen Parametern (z. B. Temperaturdifferenz, CO2). Außerdem wird ein Modell zur Darstellung verschiedener Einflussgrößen auf die Radondynamik erstellt.

Qualitaetssicherung mit Informations- und Beratungskampagne bei der Realisierung einer Solarsiedlung

Das Projekt "Qualitaetssicherung mit Informations- und Beratungskampagne bei der Realisierung einer Solarsiedlung" wird vom Umweltbundesamt gefördert und von Gemeinde Emmerthal, Projekt-Sonderstab durchgeführt. Am Südhang des Ohrbergs in der Gemeinde Emmerthal entsteht eine Siedlung mit 68 Einfamilienhäusern. Durch hohen Dämmstandard, aktive und passive Solarenergienutzung sowie einen zweistufigen Wärmepumpenprozess sollen die CO2-Emissionen im Vergleich zum heutigen Baustandard um 50 Prozent gesenkt werden. Jedes Haus muss den Heizwärmebedarf nach WSVO 95 um 30 Prozent unterschreiten. Darüber hinaus sollen 60 Prozent des Warmwasserbedarfs durch Solarkollektoren gedeckt werden. Projektziel ist, mittels Beratung der Bauherren und Bauträger sowie durch eine baubegleitende Qualitätskontrolle, die Erfüllung der o.g. Auflagen zu sichern und die Energiebilanz der Siedlung zu dokumentieren. Über Formblätter wurden Informationen über die geplanten Maßnahmen zur Wärmedämmung und Luftdichtheit sowie zur Nutzung aktiver und passiver solarer Systeme erhoben. In einer Wärmeschutzberechnung musste für jedes Haus der Nachweis einer 30prozentigen Unterschreitung des Jahresheizwärmebedarfs bezogen auf die WSVO 95 erbracht werden. Die Kooperationspartner überprüften Erhebungsbögen und Wärmeschutznachweise aufgeteilt nach Sachgebieten. Nach Einverständniserklärung des Bauherrn wurde eine baubegleitende Qualitätssicherung durchgeführt. Bei Begehungen während wichtiger Bauphasen wurden Handwerker, und Bauherren ggf. auf Maßnahmen zur Vermeidung von Wärmebrücken und Undichtheiten hingewiesen. Angeforderte Nachbesserungsarbeiten wurden kontrolliert. In zwei Informationsveranstaltungen für Bauherren, Bauträger und Architekten wurde auf Besonderheiten beim Bau von Niedrigenergiehäusern hingewiesen. An zehn Häusern, bei denen ein durch Wärmebrücken bedingter Mehrverbrauch vermutet wurde, wurden Infrarotthermographien durchgeführt. Die Luftwechselrate jedes Gebäudes wurde mit einem Blower-Door-Test ermittelt; bei Bedarf wurde nachgebessert und erneut gemessen. Heizenergieverbräuche und Betriebsdaten der Wärmepumpen wurden über einen längeren Zeitraum im Gebäude der zentralen Wärmepumpe erfasst.

Energieoptimierte Generalsanierung einer Kindertagesstätte mit Hilfe von Vakuumisolationspaneelen (VIP) und innovativen Latentwärmespeichern

Das Projekt "Energieoptimierte Generalsanierung einer Kindertagesstätte mit Hilfe von Vakuumisolationspaneelen (VIP) und innovativen Latentwärmespeichern" wird vom Umweltbundesamt gefördert und von Stadt Nürnberg, Hochbauamt Bereich Technik Kommunales Energiemanagement durchgeführt. Die Stadt Nürnberg plante die Generalsanierung und den Umbau der Kindertagesstätte in der Reutersbrunnenstraße 40 in Nürnberg. Bei diesem Gebäude gab es ein besonders großes Energieeinsparpotential. Im Ergebnis der energetischen Sanierung sollten für das sanierte Gebäude die Anforderungen der Energieeinsparverordnung 2002/2007 bezüglich des Primärenergiebedarfs und des spezifischen Transmissionswärmeverlustes jeweils mindestens 30%-40% unter dem Niveau eines Neubaus liegen. Die tatsächlichen Verbrauchskennwerte für Heizung und Strom sollten gegenüber der Bestandsituation um mindestens 60%-70% reduziert werden. Die durch den Gebäudebetrieb verursachten energiebedingten CO2-Emissionen sollten dementsprechend ebenfalls wesentlich gegenüber der Bestandsituation reduziert und damit das Klima und die Umwelt entlastet werden. Die Funktionalität, die Behaglichkeit und der Komfort, sowohl in thermischer, als auch in akustischer und visueller Hinsicht, sollten für die Kinder und die Mitarbeiter umfassend verbessert werden. Insgesamt sollte mit der Sanierung des Gebäudes gezeigt werden, dass es möglich ist, auch unter sehr schwierigen Ausgangsbedingungen (Bestandsituation, ganzheitlicher Ansatz) eine energetisch anspruchsvolle Sanierung weit unter bauordnungsrechtlichem Neubauniveau umzusetzen und dabei alle Anforderungen von Funktion und Nutzung qualitativ anspruchsvoll zu realisieren. Die Möglichkeiten der sinnvollen Integration erneuerbarer Energien, die Anwendung neuer Technologien und der Einsatz neuer Materialien sowie die dabei gemachten praktischen Erfahrungen und tatsächlichen Auswirkungen sollten beschrieben und bewertet werden können. Nach Abschluss der Sanierung sollte mittels thermografischer Untersuchung und Blower-Door-Test die Ausführungsqualität der Gebäudehülle überprüft werden. Eine umfassende messtechnische Begleitung sollte zur Betriebsoptimierung und zum Langzeitmonitoring (mindestens 3 Jahre) eingerichtet werden. Das in den ersten beiden Betriebsjahren von KEM in Zusammenarbeit mit dem Nutzerpersonal durchgeführte Monitoring konnte zeigen, dass sich das geplante Sanierungskonzept im Wesentlichen bewährt hat. Das Gebäude wird von allen Nutzern sehr gut angenommen. Es ergaben sich überwiegend hohe Behaglichkeiten und Raumluftqualitäten. Punktabzug gibt es jedoch für die Heizungstechnik. Die Energieverbräuche von Wärme und Strom und damit auch die primärenergetische Bewertung der KiTa sind zwar noch höher als die ursprünglichen Zielwerte, aber deutlich geringer als bei einer EnEV-Standardbauweise. Die Anforderungen der EnEV 2007 an einen Altbau werden um 68 %, an einen Neubau um 55% unterschritten. Selbst die Anforderungen der EnEV 2009 an einen Altbau werden noch um 26% unterschritten. Nur die Anforderungen an einen Neubau nach EnEV 2009 werden um etwa 3% überschritten. usw

Neubau

Neubau - energieeffizient und ökologisch So planen Sie Ihren Hausbau möglichst klimafreundlich Prüfen Sie vorab ehrlich Ihren genauen Wohnbedarf. Achten Sie auf möglichst hohe Energieeffizienz (Passivhaus-/ Plusenergiestandard). Installieren Sie eine Heizung nur mit erneuerbaren Energien. Wählen Sie ökologische Baustoffe und eine Bauweise mit geringem Energieaufwand für die Herstellung (Graue Energie). Mit Qualitätssicherung und Erfolgskontrolle vermeiden Sie Baufehler. Gewusst wie Der Bau eines neuen Hauses ist nicht nur unter persönlichen und finanziellen, sondern auch unter Umweltgesichtspunkten eine der folgenreichsten Konsumentscheidungen. Dies betrifft den Rohstoffbedarf und Energieverbrauch für Herstellung der Baustoffe, die dauerhafte Flächenversiegelung insbesondere durch Ein- und Zweifamilienhäuser, aber auch Schadstoffemissionen aus Baustoffen. Zudem wird mit der Bauart der Energieverbrauch und damit die Betriebskosten des Hauses für die nächsten Jahrzehnte festgeschrieben. Mit den folgenden Tipps können Sie die Umweltwirkungen eines Neubaus verringern. Genauen Wohnbedarf prüfen: Es klingt selbstverständlich, den genauen Wohnbedarf vor der Bauplanung zu klären. Die Praxis zeigt jedoch, dass bei Neubauten eher "zu groß" als "zu klein" geplant wird. Nicht selten führt das dazu, dass das Baubudget knapp und paradoxerweise am energetischen Standard gespart wird, obwohl gerade dieser zukünftige Kosten fürs Heizen verringert. Aus Umweltsicht gibt es drei wichtige Daumenregeln für die Planung des Wohnbedarfs: Flächenbedarf klein und flexibel halten: Je größer die Wohnfläche, desto höher die Kosten für Bau, Einrichtung, Instandhaltung und Heizbetrieb. Das gilt für Sie ebenso wie für die Umwelt. Planen Sie deshalb Ihren Flächenbedarf zurückhaltend und bescheiden. Mit flexiblen Grundrissen können Sie die Wohnraumgröße zudem an sich wandelnden Platzbedarf anpassen (z. B. beim Auszug von Kindern). Bestand erwerben, Lücken füllen: Der Kauf einer bestehenden Immobilie ist die ressourcenschonendere Alternative gegenüber einem Neubau. Beachten Sie hierbei unsere Tipps zur energetischen Sanierung . Sie verringern die Zersiedelung der Landschaft, indem Sie in eine Lücke in einer bestehenden Siedlung bauen, ein anderes Haus aufstocken oder sich für eine Wohnung statt für ein Einfamilienhaus entscheiden. Wohnen und Arbeiten zusammenbringen: Mit dem Bauplatz legen Sie auch Ihren Arbeitsweg dauerhaft fest. Je näher Ihr Wohnort am Arbeitsort liegt, desto besser. Bedenken Sie deshalb bei der Wohnortwahl, wie viel Lebenszeit Sie im Berufsverkehr verbringen möchten. Stellen Sie sich diese Frage auch im Hinblick darauf, was Sie machen werden, wenn sich Ihr Arbeitsort möglicherweise verändert und vom Wohnort weiter entfernt. Es ist in diesem Sinne durchaus hilfreich, schon vor einem Neubau auch einen möglichen Weiterverkauf zu durchdenken. Wer es zudem zum Einkaufen, zu Freizeitmöglichkeiten und zum öffentlichen Nahverkehr nicht weit hat, verringert den Autoverkehr – das bringt Ruhe in den Alltag und spart Geld. Am Passivhaus orientieren: Der Passivhausstandard ist die effizienteste und komfortabelste Bauweise. Er entspricht für Neubauten dem "Stand der Technik" und rechnet sich im Normalfall, wenn er kompetent geplant wird. Sehr gute und wärmebrückenfreie Wärmedämmung von Bodenplatte, Wänden, Dach und Fenstern sowie eine luftdichte Bauweise mit Lüftung und Wärmerückgewinnung minimieren den Energieverbrauch. Das ist langfristig am tragfähigsten und schützt am besten vor steigenden Energiepreisen. Gute Luftqualität und warme Raumoberflächen sorgen für einen hohen Wohnkomfort. Von Anfang an nur erneuerbare Energien nutzen: Fossile Brennstoffe sind nicht zukunftssicher und sollten für Neubauten nicht mehr verwendet werden. Heizen mit Wärmepumpe ist zum Standard geworden. Für Mehrfamilienhäuser in dicht bebauten Vierteln kann auch Fernwärme eine gute Lösung sein. Im Einfamilienhaus sollten Sie auf eine Zirkulationsleitung für Warmwasser verzichten, um hohe Wärmeverluste zu vermeiden. Der Komfortverlust bleibt überschaubar, wenn der Grundriss so gestaltet ist, dass kurze Leitungen genügen. Nutzen Sie möglichst das vollständige Dach für die Stromerzeugung mit Photovoltaik . Die Mehrkosten für eine leistungsstärkere, d. h. nicht auf den Eigenverbrauch optimierten Anlage sind gering. Mit den Erträgen Ihrer Photovoltaikanlage können Sie Effizienzmaßnahmen gegenfinanzieren. Wenn Sie viel erneuerbare Energien gewinnen und wenig Energie brauchen, erreichen Sie sogar ein "Plusenergiehaus". Energie im Lebenszyklus berücksichtigen: Bei Klimaschutzmaßnahmen geht es nicht nur um den Energieverbrauch des Gebäudes während der Nutzungsphase.  Es ist sinnvoll, den gesamten Lebenszyklus eines Gebäudes zu betrachten. Hierzu gehören neben der Nutzung die Phasen Herstellung, Errichtung, Entsorgung und Wiederverwendung. Die Energie, die in allen Phasen benötigt wird, wird unter dem Begriff Kumulierter Energieaufwand (⁠ KEA ⁠) zusammengefasst. Ihre Entscheidungen machen einen Unterschied: Auf die Wohnfläche bezogen liegt der KEA größerer Gebäude unter dem kleiner Gebäude. Ein Quadratmeter Wohnfläche in einem Einfamilienhaus verbraucht rund 40 Prozent mehr KEA als in einem mittelgroßen Mehrfamilienhaus. Der Anteil des Energieverbrauchs während der Nutzungsphase liegt jeweils zwischen 50 und 60 Prozent. Der Energiestandard beeinflusst die Höhe des KEA maßgeblich. Einfamilienhäuser im Passivhausstandard haben z.B. einen um mehr als 30 Prozent geringeren KEA als Einfamilienhäuser, die nach dem Gebäudeenergiegesetz (GEG) errichtet wurden, obwohl die Herstellung etwas aufwändiger ist. Das liegt vor allem am geringeren Energieverbrauch während der Nutzungsphase. Die Bauweise beeinflusst vor allem den Energieaufwand der Herstellungsphase. Im Vergleich zur Massivbauweise mit Wärmedämmverbundsystem erreicht die Holzleichtbauweise beispielsweise einen 15 Prozent niedrigeren Herstellungsaufwand. Wählen Sie regionale, nachwachsende und schadstofffreie Baustoffe aus; im besten Fall solche, die bei einem nahgelegenen Abbruch frei werden. Wenn sich die Konstruktion eines Tages demontieren lässt, können die Baustoffe wiederverwendet werden. Verklebte oder einbetonierte Komponenten sind hier hinderlich. Qualitätssicherung und Erfolgskontrolle fest einplanen: Empfehlenswert ist eine Baubegleitung, die Fehler in der Bauphase vermeiden kann – und bei besonders effizienten Neubauten auch gefördert wird. Ein Blower-Door-Test weist die angestrebte Luftdichtheit nach oder zeigt, an welchen Stellen nicht sorgfältig genug gearbeitet wurde. Ziel sollte ein Drucktestkennwert n 50 kleiner 0,6 1/h sein. Nach Fertigstellung des Gebäudes ist Ihnen ein Energieausweis auszuhändigen. Lassen Sie sich bestätigen, dass die Berechnungen mit der tatsächlichen Bauausführung übereinstimmen. Außerdem geht es um die Frage: Funktioniert das Haus wie gedacht? Überwachen Sie dafür den Energieverbrauch, zum Beispiel mit dem kostenlosen Energiesparkonto . Stellen Sie eine Abweichung fest, sollten Sie, bei Bedarf mit Energieberater*in, die Ursache suchen und nachbessern (lassen). Was Sie noch tun können: Eine barrierefreie oder -arme Bauweise ermöglicht Ihnen, das Haus auch noch im hohen Alter zu nutzen. Die richtige Ausrichtung von Dach und Fenstern senkt durch einen idealen Sonneneinfall die Heizkosten. Lassen Sie einen zuverlässigen Hitzeschutz planen (siehe unsere Tipps zu Kühle Räume im Sommer ). Mit einer Lüftungsanlage sorgen Sie für gute Luft und sparen Heizenergie. Mehr Infos finden Sie in unserer Broschüre Lüftungskonzepte für Wohngebäude Mit umwelt- und gesundheitsverträglichen Bauprodukten – z. B. am Blauen Engel erkennbar – schützen Sie Ihre Gesundheit, die Umwelt und das ⁠ Klima ⁠. Mit dem richtigen Heiz- und Lüftungsverhalten können Sie zusätzlich Energiekosten einsparen (siehe unsere Tipps zu Heizen, Raumtemperatur ). Hintergrund Umweltsituation: Der Strom- und insbesondere der Heizenergieverbrauch der Gebäude verursacht in Deutschland etwa 35 Prozent des Endenergieverbrauchs. Zählt man die Herstellung der Bauprodukte und die Bauphase hinzu, sind Gebäude für etwa 40 Prozent der deutschen Treibhausgasemissionen verantwortlich. Rund 70 Prozent davon entfallen auf Wohngebäude. Um das ⁠ Klima ⁠ zu schützen, müssen Neubauten möglichst wenig zu den Treibhausgasemissionen beitragen, also möglichst effizient sein, mit erneuerbaren Energien versorgt und klimafreundlich hergestellt werden. Darüber hinaus gibt es weitere Handlungsfelder für den Umweltschutz im Bereich Bauen und Wohnen: Beispielsweise nahm die Siedlungsfläche 2022 täglich um fast 37 Hektar (51 Fußballfelder) zu. Mehr als die Hälfte des Abfalls in Deutschland sind Bau- und Abbruchabfälle . Gesetzeslage: Das Klimaschutzgesetz gibt vor, dass Deutschland 2045 netto keine Treibhausgasemissionen mehr verursachen darf – was auch für Gebäude und ihre Heizungen gilt. Das Brennstoffemissionshandelsgesetz hat einen CO₂-Preis eingeführt, was Erdgas und Heizöl nach und nach immer teurer machen wird. Zudem wird dieses Gesetz die zulässigen Emissionsmengen begrenzen. Deshalb ist es sinnvoll, ein Haus von Anfang an möglichst effizient zu errichten und mit erneuerbaren Energien zu versorgen. Das Gebäudeenergiegesetz (GEG) begrenzt den zulässigen Bedarf an nicht-erneuerbarer ⁠ Primärenergie ⁠ und die Wärmeverluste durch die Gebäudehülle. Es bestimmt, wann neu installierte Heizungen mindestens welchen Anteil erneuerbarer Energien nutzen müssen. Neubauten müssen auch Anforderungen an den sommerlichen Wärmeschutz einhalten, damit sich Räume im Sommer weniger überhitzen. Zur Baufertigstellung ist ein Energieausweis auszustellen, und der Bauherr oder Eigentümer muss der nach Landesrecht zuständigen Behörde in einer Erfüllungserklärung bestätigen, dass die Anforderungen des Gesetzes eingehalten werden. Neubauten, die die gesetzlichen Anforderungen übertreffen, werden im Programm Klimafreundlicher Neubau Wohngebäude mit zinsverbilligten Krediten gefördert. Für Neubauten mit Nachhaltigkeitszertifizierung steigt der Kredithöchstbetrag und es gelten bessere Förderbedingungen. Der Betrieb einer Photovoltaik-Dachanlage lohnt sich auf Einfamilienhäusern in erster Linie durch den vermiedenen Strombezug ("Eigenverbrauch"). Zusätzlich wird für den überschüssigen Strom, der in das Netz eingespeist wird, eine Vergütung nach dem Erneuerbare-Energien-Gesetz gezahlt. Ein Batteriespeicher lohnt sich nicht in allen Fällen – lassen Sie sich ein Angebot mit und eines ohne Batteriespeicher geben. Nach und nach werden wir mit mehr erneuerbaren Energien heizen. Das ist gut für das Klima und auch für Ihren Geldbeutel. Unser Entscheidungsbaum hilft Ihnen durch die Paragraphen des neuen Gebäudeenergiegesetzes, die seit dem 1.1.2024 gelten. (Stand: 10/2024) Marktbeobachtung: Das Neubaugeschehen ist derzeit rückläufig: während seit 2016 rund 30.000 Wohnungen pro Monat genehmigt wurden, waren es 2023 monatlich noch rund 20.000. 1 Schon seit einigen Jahren setzt die deutliche Mehrheit neu errichteter Wohngebäude beim Heizen auf Wärmepumpen. 2022 lag der Anteil bei 70 Prozent, Tendenz steigend. 2 Es gibt eine Reihe von Gebäudestandards: Das Effizienzhaus beschreibt förderfähige Häuser. Ein Effizienzhaus 40 bedeutet, dass sein Primärenergiebedarf nur noch 40 Prozent des Primärenergiebedarfs des Referenzgebäudes beträgt, also eines Gebäudes mit gleicher Geometrie, aber im GEG festgelegten energetischen Eigenschaften. Ein Plusenergiehaus gewinnt im Jahresverlauf mehr Energie aus erneuerbaren Energien, als es selbst verbraucht. Am effizientesten ist das Passivhaus , das einen so geringen Heizwärmebedarf hat, dass die Abwärme der Bewohner*innen und üblicher Haushaltsgeräte zum Heizen ausreicht. Das erreicht es mit kompakter Bauweise, hervorragendem Wärmeschutz, hoher Luftdichtheit und Lüftung mit Wärmerückgewinnung. Es ist ratsam, effiziente Häuser wie das Passivhaus mit einer speziell angepassten Methode wie dem Passivhaus-Projektierungspaket zu planen, um ausreichend genaue Ergebnisse zu erzielen. Auch wenn ein Haus an sich ziemlich viel Geld kostet: Der Blick allein auf die Investitionskosten übersieht die Tatsache, dass ein Haus für Heizung, Betrieb, Instandhaltung usw. jahrzehntelang Geld kostet. Wichtiger als die Investitionskosten sind also die gesamten Lebenszykluskosten. Zusätzlich gibt es auch Möglichkeiten, ohne Verlust an Umweltqualität die Anschaffungskosten zu verringern: Kompakte Kubatur, kleine Wohnfläche oder nahe beieinander liegende Räume mit Wasserbedarf (Bäder und Küche) für kurze (Ab-)Wasserleitungen und Lüftungskanäle. Eine Lüftung mit Wärmerückgewinnung und die Beseitigung von Wärmebrücken senken die Heizlast und erlauben eine kleinere und günstigere Heizung einzubauen. Quellen: 1 Statistisches Bundesamt: Monatlich genehmigte Wohnungen 2 Statistisches Bundesamt: Auswahl Wohngebäude

1 2