API src

Found 157 results.

Related terms

Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions

Das Projekt "Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Böden sind als Standort für Pflanzen und Lebensraum für eine Vielzahl von Mikroorganismen ein integraler Bestandteil von Ökosystemen. Das Kernprojekt Boden stellt grundlegende Daten über Bodeneigenschaften und Bodenfunktionen bereit. Wir organisieren zudem koordinierte Bodenprobenahmen auf den Experimentier-Flächen (EP) und beteiligen uns an der Synthese in den Biodiversitäts Exploratorien (BE). Im Vordergrund steht dabei die Fragestellung, wie sich Landnutzung und Biodiversität auf den Eintrag, die Speicherung und die Stabilität von Kohlenstoff und Nährstoffen im Boden auswirken. In der vergangenen Projektphase der BE haben wir 2017 die koordinierte Bodenprobenahme auf allen EP wiederholt und grundlegende Bodenparameter für weitere Projekte zur Verfügung gestellt. Wir haben zudem das Monitoring des Streufalls auf allen Waldflächen fortgesetzt. Wir konnten zeigen, dass der Streufall in den ungenutzten Wäldern größer als in genutzten Wäldern war, wozu insbesondere die größere Menge an Zweigen, Ästen und Früchten im ungenutzten Wald beitrug. Die Umsatzzeiten von Kohlenstoff in der organischen Auflage zeigen, dass diese sowohl durch den Standort (z.B. pH Wert, Nährstoffverfügbarkeit) als auch durch die Qualität der Streu beeinflusst werden. Der Abbau von organischer Substanz wurde auf allen Experimentier-Flächen in situ durch Messung der Bodenatmung bestimmt. Durch die Trockenheit im Sommer 2018 waren die gemessenen Bodenatmungsraten gering. Trotzdem konnten im Wald Effekte der Untersuchungsregion, der Landnutzung und der Hauptbaumart nachgewiesen werden. Die Nährstoffauswaschung wurde mit Austauscherharzen im Jahr 2018/19 kumulativ bestimmt, so dass die Analyse noch nicht abgeschlossen ist. In der kommenden Projektphase werden wir das Bodenmonitoring auf allen EP fortsetzen. In enger Kooperation mit anderen Projekten werden wir eine weitere Bodenprobenahme auf allen 300 EP organisieren. Diese Probenahme wird dann auch die neu etablierten Wald- und Grünlandexperimente einschließen. Auf allen Flächen werden wir grundlegende Bodeneigenschaften und Indikatoren für die Bodenqualität bestimmen, auch um die Vergleichbarkeit der neuen Versuchsflächen mit den bisherigen Untersuchungsflächen (den Kontrollflächen) sicherzustellen. Wir werden das Bodenprobenarchiv sowie das Streufall-Monitoring in den BE fortführen. Da die zentrale Frage des Waldexperiments ist, inwiefern ein Lückenschlag durch geänderte Resourcenverfügbarkeit die Biodiversität beeinflusst, werden wir in den neu etablierten Lücken sowohl den Streueintrag, als auch die Nährstoffverfügbarkeit im Boden bestimmen. Wir werden überprüfen, ob diese Änderungen in der Nährstoffverfügbarkeit durch den Abbau von organischer Bodensubstanz bedingt werden. Dazu werden wir die Bodenatmung, Enzymaktivitäten, den Streuabbau und die Aktivität der Bodenfauna bestimmen. Zusätzlich zu unseren bisherigen Synthese-Aktivitäten werden wir dann zur gemeinsamen Bewertung des Waldexperimentes beitragen.

DAAD - Procope Programm: Disturbance of ecosystem respiration measurements in forests by diurnal fluctuations of the volatile soil Carbon stock

Das Projekt "DAAD - Procope Programm: Disturbance of ecosystem respiration measurements in forests by diurnal fluctuations of the volatile soil Carbon stock" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. The volatile Carbon stock of soils, i.e. the storage that underlies short term changes, includes the gaseous CO2 present in the soil air and the dissolved CO2 in the water. This stock is marginal in contrast to the carbon stored in soil organic matter or in the biomass, however, it can amount up to several times the daily ecosystem respiration and can be equivalent to the CO2 content of an atmospheric air column of more than 50 m. Therefore ecosystem CO2 exchange measurements interfere with soil stock changes, i.e. an CO2 efflux is not necessarily the result of an actual production and soil CO2 production can also be masked by accumulating CO2 in the soil. The time scales of the volatility of soil CO2 can be seasonal (e.g. summer filling the subsoil with CO2 when respiration is high, depletion in winter when respiration rates are low), multi-daily (e.g. stock filling after rainy period by impeded top-soil diffusion ) and hourly (e.g. by the diurnal temperature cycle causing a extension and compression of the soil-air column ). To benefit from the complementary methodological and scientific experience and in order to support the collaboration of young scientist of different institutes and research areas a cooperation project was established. Partners in this project are the Institute of Soil Science of the University of Freiburg and the UMR Ecologie et Ecophysiologie forestiere of the INRA in Champenoux. The project is funded by the DAAD Procope program. As Partners The central goal of the project is to reveal possible discrepancies between soil CO2 efflux and soil respiration, i.e. the actual production of CO2. We hypothesize, that soil respiration models are significantly improved when the efflux rates are corrected for changes of the volatile carbon stock. As test sites two complementary forest sites were chosen. A deeply aerated sandy/gravely soil at Hartheim,Germany, and a loamy site with stagnic subsoil and limited aerated at Hesse, France. Following subgoals will be treated: characterization of the gas transport properties of the sites and the spatial and temporal variability. quantification of diurnal fluctuations of soil CO2 at the two forest sites identification of environmental (weather and site) factors controlling these fluctuations development and implementation of a soil gas transport model to include short-term stock changes in respiration models revealing relationships between the d13C-signature of soil gases CO2 efflux and the soil CO2 stock changes. vertical partitioning of the volatile soil carbon sources by a combined approach of d13C characteristics of the soil air and the efflux and a Fick's law modelling of gas transport.

CarboMais: C-Flüsse im Maisanbau

Das Projekt "CarboMais: C-Flüsse im Maisanbau" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität zu Kiel, Institut für Pflanzenbau und Pflanzenzüchtung, Abteilung Grünland und Futterbau/Ökologischer Landbau durchgeführt. Die Nachhaltigkeit der Biogasproduktion im Hinblick auf die THG-Minderung wird entscheidend durch die Effekte des Substratanbaus auf die Veränderungen des organischen C-Gehaltes (Corg) des Bodens beeinflusst. Dies ist insbesondere dann der Fall, wenn im Rahmen von Landnutzungsänderungen mit einer Freisetzung großer CO2- und N2O-Mengen zu rechnen ist. Aber auch die Wahl der für die Substratproduktion eingesetzten Kulturart kann einen Effekt auf die Veränderung des Corg-Gehalt des Bodens haben. Trotz der immensen Bedeutung der Kohlenstoffflüsse im System Boden-Pflanze besteht noch erheblicher Forschungsbedarf was die Bewertung der Humuswirkung von Kulturpflanzenarten, insbesondere Mais, betrifft. Dies gilt speziell für Mais deshalb, weil die verfügbaren Daten zur Humusbilanz mehr als 30 Jahre alt sind und der Zuchtfortschritt der letzten Jahrzehnte damit nicht berücksichtigt ist. Das Ziel des Projektes besteht daher darin, in einem Feldexperiment die Effekte des in den letzten Jahrzehnten erfolgten Zuchtfortschritts von Mais auf dessen Wurzelmassenbildung, und damit auf die Humusreproduktionsleistung, erstmalig für nordwesteuropäisches Zuchtmaterial zu quantifizieren. In einem zweijährigen Feldversuch wird der Ertragsfortschritt von Wurzel- und Sprossmasse an einem Set von 10 mittelfrühen Silomaissorten geprüft, die in den letzten 40 Jahren zugelassen wurden. Hierzu wird mittels destruktiver und nicht-destruktiver Verfahren die Dynamik der Spross- und Wurzelmassenakkumulation quantifiziert. Ergänzende Erhebungen zu CO2-Flüssen (Gasaustausch, Bodenatmung) ermöglichen eine modellgestützte Ermittlung von sortenspezifischen C-Bilanzen.

Soil N dynamics as affected by different land use in Western and Southern China

Das Projekt "Soil N dynamics as affected by different land use in Western and Southern China" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. The aim of the research project is to quantify the stocks and turnover of soil nitrogen in Western and Southern China as dependent from soil structure and land use. Key soil characteristics are determined at representative sites with regional specific land use and degradation status. The investigations will follow a land use gradient of natural forests, arable and pasture soils, the latter ones considering different degradation and rehabilitation status. The actual and potential soil nitrogen turnover will be horizon-wise quantified and related to soil structure and land use impacts. Beside mineral nitrogen, also preliminary organic N compounds using physical and chemical extraction will be detected. Parameters for the investigations are, beside total C and N stocks and distribution, gross and net N mineralization, nitrification, microbial biomass C and N and microbial respiration and indicators for soil N turnover like active N pools and light fraction of organic matter. In the last phase the structure of the soil microbial microbial community will be determined and related to indicators of nitrogen status and efficiency. The research activities will be carried out in close co-operation with the Institute for Soil and Water Conservation/ Yangling University at loess soils and the Nanjing Institute for Soil Science/ Chinese Academy for Science in Nanjing at red soil sites.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Angewandte Mikrobiologie, Professur für Allgemeine und Bodenmikrobiologie durchgeführt. Wheat and barley production will be optimized under low energy input in organic farming at two experimental field stations of University Giessen and University Hohenheim. Effects of root densities (row distance), two nutrients fertilization regimes and seed inoculation of the plant growth promoting bacterium Hartmannibacter diazotrophicus will be analyzed in wheat as an important winter crop and in the summer crop barley. Quality parameters of produced grains differ for the two crops. For baking wheat protein quality and quantity is important while for malting barley high starch content is required. These parameter of the grains will be related to their root system and rhizosphere microbiome under the different treatments. The seed, root and rhizosphere bacterial and fungal microbiome will be analysed and it is expected to be specific for the two crop plants and less affected by the two soil types and locations. We aim to analyze the implication of root competition, nutrient limitation and seed inoculation on the microbiome under field conditions. Root competition will be analyzed using two different row distances under a low and optimal nitrogen fertilization regime. The plant root system might further profit from the inoculum and benefits would be derived from a more efficient root system that could capture N from fertiliser-soil sources more effectively, as well as more efficient N cycling might occur. Root architecture and biomass will be linked to microbiome analysis and grain quality and quantity. Before seeding and after harvest soil samples are analyzed for parameter estimating the sustainability of crop production. Such parameter include bacterial and fungal diversity, microbial respiration rate, soil N concentrations, protease and nitrification activity, phosphate concentration and phosphatase activity. Our results will be used for identification of optimal parameter for sustainable wheat and barley production and will lead to a bioeconomic evaluation.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Qualität pflanzlicher Erzeugnisse (340e) durchgeführt. Wheat and barley production will be optimized under low energy input in organic farming at two experimental field stations of University Giessen and University Hohenheim. Effects of root densities (row distance), two nutrients fertilization regimes and seed inoculation of the plant growth promoting bacterium Hartmannibacter diazotrophicus will be analyzed in wheat as an important winter crop and in the summer crop barley. Quality parameters of produced grains differ for the two crops. For baking wheat protein quality and quantity is important while for malting barley high starch content is required. These parameter of the grains will be related to their root system and rhizosphere microbiome under the different treatments. The seed, root and rhizosphere bacterial and fungal microbiome will be analysed and it is expected to be specific for the two crop plants and less affected by the two soil types and locations. We aim to analyze the implication of root competition, nutrient limitation and seed inoculation on the microbiome under field conditions. Root competition will be analyzed using two different row distances under a low and optimal nitrogen fertilization regime. The plant root system might further profit from the inoculum and benefits would be derived from a more efficient root system that could capture N from fertiliser-soil sources more effectively, as well as more efficient N cycling might occur. Root architecture and biomass will be linked to microbiome analysis and grain quality and quantity. Before seeding and after harvest soil samples are analyzed for parameter estimating the sustainability of crop production. Such parameter include bacterial and fungal diversity, microbial respiration rate, soil N concentrations, protease and nitrification activity, phosphate concentration and phosphatase activity. Our results will be used for identification of optimal parameter for sustainable wheat and barley production and will lead to a bioeconomic evaluation.

Rhizo4Bio (Phase 1): Produktion von Weizen und Gerste bei reduziertem Input im organischen Landbau

Das Projekt "Rhizo4Bio (Phase 1): Produktion von Weizen und Gerste bei reduziertem Input im organischen Landbau" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Angewandte Mikrobiologie, Professur für Allgemeine und Bodenmikrobiologie durchgeführt. Wheat and barley production will be optimized under low energy input in organic farming at two experimental field stations of University Giessen and University Hohenheim. Effects of root densities (row distance), two nutrients fertilization regimes and seed inoculation of the plant growth promoting bacterium Hartmannibacter diazotrophicus will be analyzed in wheat as an important winter crop and in the summer crop barley. Quality parameters of produced grains differ for the two crops. For baking wheat protein quality and quantity is important while for malting barley high starch content is required. These parameter of the grains will be related to their root system and rhizosphere microbiome under the different treatments. The seed, root and rhizosphere bacterial and fungal microbiome will be analysed and it is expected to be specific for the two crop plants and less affected by the two soil types and locations. We aim to analyze the implication of root competition, nutrient limitation and seed inoculation on the microbiome under field conditions. Root competition will be analyzed using two different row distances under a low and optimal nitrogen fertilization regime. The plant root system might further profit from the inoculum and benefits would be derived from a more efficient root system that could capture N from fertiliser-soil sources more effectively, as well as more efficient N cycling might occur. Root architecture and biomass will be linked to microbiome analysis and grain quality and quantity. Before seeding and after harvest soil samples are analyzed for parameter estimating the sustainability of crop production. Such parameter include bacterial and fungal diversity, microbial respiration rate, soil N concentrations, protease and nitrification activity, phosphate concentration and phosphatase activity. Our results will be used for identification of optimal parameter for sustainable wheat and barley production and will lead to a bioeconomic evaluation.

Teilprojekt: Response of belowground carbon, sulphur and iron cycling in fen soils

Das Projekt "Teilprojekt: Response of belowground carbon, sulphur and iron cycling in fen soils" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Forschungsstation durchgeführt. Klimamodelle sagen eine Zunahme von Sommertrockenheit mit Starkregenereignissen in mittleren und nördlichen Breiten vorher, die das hydrologische Regime von Feuchtgebieten, einem Kohlenstoffspeicher von globaler Bedeutung verändern. Die Auswirkungen von verstärkter Austrocknung und Wiederbefeuchtung, sowie möglicher Vernässung, auf Produktivität, Bodenatmung, Methanemissionen und die Kopplung des Kohlenstoffkreislaufes an Redoxprozesse im Boden ist bislang ungenügend verstanden. Im Projekt wird das hydrologische Regime eines Niedermoores experimentell verändert und die Konsequenzen für die wesentlichen Umsetzungen analysiert die zum Kohlenstoffkreislauf beitragen. Zu diesem Zweck wird die Veränderung in Bodenwassergehalten, -temperaturen und -respiration quantifiziert. Die Verfügbarkeit, Produktion und der Verbrauch von relevanten Elektronenakzeptoren für die Bodenatmung wird bestimmt, da diese die Methanbildungsrate im Boden maßgeblich beeinflussen. Eine Laborstudie dient der Untersuchung der Wirkung einer Bandbreite von Austrocknungsbedingungen auf Respirationsraten. Diese und zuvor gewonnen Datensätze werden genutzt um Auswirkungen auf den Kohlenstoffkreislauf mit dem Ökosystemmodell ECOSYS zu analysieren. Hierbei steht zunächst die kausale Prozessanalyse und schließlich die Simulation von zu erwartenden Veränderungen auf der Zeitskala von Jahrzehnten im Vordergrund.

Vorhaben Teilprojekt 4b und Teilprojekt 6b

Das Projekt "Vorhaben Teilprojekt 4b und Teilprojekt 6b" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Teilprojekt 4 quantifiziert rezente Ökosystemprozesse, v.a. CO2- und CH4-Fluesse zwischen Landoberfläche und Atmosphäre in Permafrost-Landschaften Nordostsibiriens am Beispiel von 2 Untersuchungsgebieten. TP6 simuliert die vergangene, rezente und zukünftige Bodenkohlenstoffdynamik und damit verbundene Kohlenstoffflüsse in Abhängigkeit von Klima, atmosphärischer CO2 Konzentration und Bodeneigenschaften. In TP4 wird die räumliche Variabilität der Flüsse auf der Mikro- bis Makroskala mit Hilfe von Bodendaten, stationären und mobilen Eddy-Kovarianz-Stationen und Fernerkundungsdaten quantifiziert. Es werden Verfahren zur Hochskalierung der gemessenen Flüsse auf die Skala von regionalen Erdsystemmodellen entwickelt und die Kohlenstoffbilanz der Permafrostgebiete auf den verschiedenen Skalen erstellt. Zur Analyse der Dynamik physiologisch interpretierbarer Einzelprozesse wie Photosynthese, Pflanzenatmung, heterotrophe Bodenatmung, CH4 Produktion und -Oxidation werden detaillierte isotopengeochemische Prozessstudien durchgeführt. In TP6 werden Permafrost-relevante Prozesse wie der vertikale Kohlenstofftransport, die Stabilisierung organischen Materials und der Ab- und Umbau organischen Materials in das Ökosystemmodel JSBACH implementiert. Die dynamische Unterteilung der Landschaft in aerobe und anaerobe Bereiche findet besondere Berücksichtigung. Mittels JSBACH wird dann die Vulnerabilität des Bodenkohlenstoffs unter sich ändernden Umweltbedingungen prognostiziert.

Effects of elevated CO2 concentrations on carbon turnover in crop rotations studied in a Chinese and a German free air carbon dioxide enrichment (FACE) approach

Das Projekt "Effects of elevated CO2 concentrations on carbon turnover in crop rotations studied in a Chinese and a German free air carbon dioxide enrichment (FACE) approach" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Biodiversität durchgeführt. Die Böden der Welt sind die größten terrestrischen Kohlenstoffspeicher. Die rasch zunehmende CO2-Konzentration in der Atmosphäre wird die ober- und unterirdische Biomasseproduktion von Pflanzen stimulieren. Insbesondere in Agrarökosystemen sind bislang Rückkoppelungswirkungen des CO2-Anstieges auf den Corg-Gehalt in Böden bzw. auf die Bindung und Freisetzung von CO2 und damit auf den atmosphärischen CO2-Gehalt noch nicht ausreichend abschätzbar. Eine entscheidende Rolle spielt dabei der mikrobielle Umsatz des C in Böden. Diskutiert wird sowohl eine mögliche Beschleunigung des C- bzw. CO2-Umsatzes durch den vermehrten Anfall leicht verfügbarer C-Verbindungen im Boden, als auch eine Reduktion der Mineralisierungsdaten, die aus einem verzögerten Abbau von Pflanzenresten mit einem durch die CO2-Erhöhung verursachten größeren C:N-Verhältnis resuliert. Freiland-CO2-Anreicherungsversuche in ackerbaulich genutzten Systemen unter Verwendung der sog. Free Air Carbon Dioxide Enrichment (FACE) Technik existieren z.Z. nur in China und in Deutschland. Das vorliegende Projekt wird diese einzigartigen Versuchsansätze der beiden Projektpartner nutzen und die Wirkungen erhöhter CO2-Konzentrationen auf die ober- und unterirdische Biomassebildung der Fruchtfolgeglieder, auf die in situ Bodenatmung, auf den mikrobiellen Biomassegehalt der Böden einschließlich des respiratorischen Quotienten der mikrobiellen Biomasse sowie auf die Mineralisierungsraten von Pflanzenresten untersuchen. Gleichzeitig wird der Einfluss einer unterschiedlichen Stickstoff-Düngung überprüft. Das Projekt dient neben einem Methodenvergleich der Bewertung des Einflusses von unterschiedlichen Bodeneigenschaften und Klimaverhältnissen auf die CO2-Wirkung. Die experimenellen Daten sollen zur Verbesserung eines Modells zur Beschreibung des C- und N-Umsatzes in Böden beitragen.

1 2 3 4 514 15 16