"Greenfreeze", der erste FCKW-freie Kühlschrank der Welt wird präsentiert. Er wurde in Zusammenarbeit mit dem Wissenschaftler Hans Preisendanz und der sächsischen Firma "dkk Scharfenstein" (heute "Foron") entwickelt und produziert. Dieses Gerät kühlt mit Naturgasen Propan und Butan, die weder das Ozonloch vergrößern noch den Treibhauseffekt verstärken.
technologyComment of natural gas liquids fractionation (GLO): The recovered NGL stream is processed through a fractionation train consisting of up to five distillation towers in series: a demethanizer, a deethanizer, a depropanizer, a debutanizer and a butane splitter. The overhead product from the deethanizer is ethane and the bottom product is fed to the depropanizer. The overhead product from the depropanizer is propane and the bottom is fed to the debutanizer. The overhead product from the debutanizer is a mixture of normal and iso-butane, and the bottom is a C5+ gasoline mixture (pentane in this inventory). A slightly simplyfied fractioning process can be seen in the sketch below. imageUrlTagReplace937d93d2-cfed-4ec9-9363-614415661a5c Source: Thompson S. M., Robertson G. (2011): Liquefied Petroleum Gas, in Ullmanns Encyclopedia of Industrial Chemistry, 7th Edition. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production.
technologyComment of natural gas liquids fractionation (GLO): The recovered NGL stream is processed through a fractionation train consisting of up to five distillation towers in series: a demethanizer, a deethanizer, a depropanizer, a debutanizer and a butane splitter. The overhead product from the deethanizer is ethane and the bottom product is fed to the depropanizer. The overhead product from the depropanizer is propane and the bottom is fed to the debutanizer. The overhead product from the debutanizer is a mixture of normal and iso-butane, and the bottom is a C5+ gasoline mixture (pentane in this inventory). A slightly simplyfied fractioning process can be seen in the sketch below. imageUrlTagReplace937d93d2-cfed-4ec9-9363-614415661a5c Source: Thompson S. M., Robertson G. (2011): Liquefied Petroleum Gas, in Ullmanns Encyclopedia of Industrial Chemistry, 7th Edition. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production.
technologyComment of acetaldehyde oxidation (RER, RoW): Oxidation of acetaldehyde technologyComment of acetic acid production, product in 98% solution state (RER, RoW): The process represents the Celanese process (which is an optimized version of the Monsanto process) in which methanol reacts with carbon monoxide under the influence of a rhodium catalyst. It is assumed that 50% of the off-gas is burned as fuel, thus VOC emissions are reduced and CO2 is higher. References: Le Berre, C., Serp, P., Kalck, P. and Torrence, G. P. 2014. Acetic Acid. Ullmann's Encyclopedia of Industrial Chemistry. technologyComment of oxidation of butane (RoW): Oxidation of butane technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html
Production mix technologyComment of decarboxylative cyclization of adipic acid (RER): decarboxylative cyclization of adipic acid technologyComment of formic acid production, methyl formate route (RER): The worldwide installed capacity for producing formic acid was about 330 000 t/a in 1988. Synthesis of formic acid by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to formic acid and methanol. The methanol is returned to the first stage. Although the carbonylation of methanol is relatively problem-free and has been carried out industrially for a long time, only recently has the hydrolysis of methyl formate been developed into an economically feasible process. The main problems are associated with work-up of the hydrolysis mixture. Because of the unfavorable position of the equilibrium, reesterification of methanol and formic acid to methyl formate occurs rapidly during the separation of unreacted methyl formate. Problems also arise in the selection of sufficiently corrosion-resistant materials Carbonylation of Methanol In the two processes mentioned, the first stage involves carbonylation of methanol in the liquid phase with carbon monoxide, in the presence of a basic catalyst: imageUrlTagReplacea0ec6e15-92c8-4d44-82bb-84e90e58b171 As a rule, the catalyst is sodium methoxide. Potassium methoxide has also been proposed as a catalyst; it is more soluble in methyl formate and gives a higher reaction rate. Although fairly high pressures were initially preferred, carbonylation is carried out in new plants at lower pressure. Under these conditions, reaction temperature and catalyst concentration must be increased to achieve acceptable conversion. According to published data, ca. 4.5 MPa, 80 °C, and 2.5 wt % sodium methoxide are employed. About 95 % carbon monoxide, but only about 30 % methanol, is converted under these circumstances. Nearly quantitative conversion of methanol to methyl formate can, nevertheless, be achieved by recycling the unreacted methanol. The carbonylation of methanol is an equilibrium reaction. The reaction rate can be raised by increasing the temperature, the carbon monoxide partial pressure, the catalyst concentration, and the interface between gas and liquid. To synthesize methyl formate, gas mixtures with a low proportion of carbon monoxide must first be concentrated. In a side reaction, sodium methoxide reacts with methyl formate to form sodium formate and dimethyl ether, and becomes inactivated. The substances used must be anhydrous; otherwise, sodium formate is precipitated to an increasing extent. Sodium formate is considerably less soluble in methyl formate than in methanol. The risk of encrustation and blockage due to precipitation of sodium formate can be reduced by adding poly(ethylene glycol). The carbon monoxide used must contain only a small amount of carbon dioxide; otherwise, the catalytically inactive carbonate is precipitated. Basic catalysts may reverse the reaction, and methyl formate decomposes into methanol and carbon monoxide. Therefore, undecomposed sodium methoxide in the methyl formate must be neutralized. Hydrolysis of Methyl Formate In the second stage, the methyl formate obtained is hydrolyzed: imageUrlTagReplace2ddc19c0-905f-42c3-b14c-e68332befec9 The equilibrium constant for methyl formate hydrolysis depends on the water: ester ratio. With a molar ratio of 1, the constant is 0.14, but with a water: methyl formate molar ratio of 15, it is 0.24. Because of the unfavorable position of this equilibrium, a large excess of either water or methyl formate must be used to obtain an economically worthwhile methyl formate conversion. If methyl formate and water are used in a molar ratio of 1 : 1, the conversion is only 30 %, but if the molar ratio of water to methyl formate is increased to 5 – 6, the conversion of methyl formate rises to 60 %. However, a dilute aqueous solution of formic acid is obtained this way, and excess water must be removed from the formic acid with the expenditure of as little energy as possible. Another way to overcome the unfavorable position of the equilibrium is to hydrolyze methyl formate in the presence of a tertiary amine, e.g., 1-(n-pentyl)imidazole. The base forms a salt-like compound with formic acid; therefore, the concentration of free formic acid decreases and the hydrolysis equilibrium is shifted in the direction of products. In a subsequent step formic acid can be distilled from the base without decomposition. A two-stage hydrolysis has been suggested, in which a water-soluble formamide is used in the second stage; this forms a salt-like compound with formic acid. It also shifts the equilibrium in the direction of formic acid. To keep undesirable reesterification as low as possible, the time of direct contact between methanol and formic acid must be as short as possible, and separation must be carried out at the lowest possible temperature. Introduction of methyl formate into the lower part of the column in which lower boiling methyl formate and methanol are separated from water and formic acid, has also been suggested. This largely prevents reesterification because of the excess methyl formate present in the critical region of the column. Dehydration of the Hydrolysis Mixture Formic acid is marketed in concentrations exceeding 85 wt %; therefore, dehydration of the hydrolysis mixture is an important step in the production of formic acid from methyl formate. For dehydration, the azeotropic point must be overcome. The concentration of formic acid in the azeotropic mixture increases if distillation is carried out under pressure, but the higher boiling point at high pressure also increases the decomposition rate of formic acid. At the same time, the selection of sufficiently corrosion-resistant materials presents considerable problems. A number of entrainers have been proposed for azeotropic distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html
Das Projekt "Mittel zur Erzeugung von Gasdruck" wird vom Umweltbundesamt gefördert und von ETC - engineering & technology consulting GmbH durchgeführt. Diesem Projekt liegen die adsorbierenden bzw. desorbierenden Eigenschaften spezieller Stoffe, wie z.B. Aktivkohle, in Verbindung mit diversen Gasen, für die Entwicklung neuer Verfahren und Produkte zugrunde. (Patente wurden bereits erteilt). Unsere Untersuchungen haben ergeben, dass Aktivkohlen mit diversen Gasen, nach Evakuierung in einem Absolutdruckbereich bis 800 mbar sehr gut dotierbar sind. So sind z.B. Dotiermengen bis zu 50 Gewichtsprozent bei Butan, größer 40 Prozent bei Kältemittel R 134 a, größer 30 Prozent bei Chlorgas und größer 10 Prozent bei CO2 (Kohledioxyd) möglich. Durch simple Zugabe von Wasser wird das entsprechende Gas wieder freigesetzt. Chlor und Kohlensäure gehen zwar zum Teil in Lösung, es liegt aber immer noch großes Druckpotential vor. Damit ergeben sich diverse Anwendungsmöglichkeiten für z.B. Druckspeicher (Schwimmwesten), Speicher für brennbare Gase oder für Desinfektionsmittel. Letzteres wäre speziell für die USA interessant, weil dort Chlorgas vielerorts aus sicherheitstechnischer Sicht verboten ist und nur Vorort zum sofortigen Gebrauch hergestellt werden darf. Oder auch für den Klein-Pool-Betreiber (Privat, Hotels...), wo Chlorgas auch aufgrund der teuren Sicherheitstechnik nicht in Frage kommt. Es gibt darüber hinaus diverse andere Anwendungsbeispiele (auch Wärmetechnisch), die zu diskutieren wären. Aufgrund dieser Fülle an Möglichkeiten und in Ermangelung kompetenter Entwicklungstools sieht sich ETC nicht alleine in der Lage, die Ideen umzusetzen.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Evonik Industries AG durchgeführt. Das Vorhabensziel besteht in der Entwicklung eines auf photokatalytischer Alkandehydrierung beruhenden Verfahrens für die Herstellung von Aldehyden. Dadurch sollen CO2 stofflich genutzt und Alkane einer chemischen Verwendung zugänglich gemacht werden. Im Rahmen des angestrebten vorwettbewerblichen Projektes sollen insbesondere die technische und wirtschaftliche Machbarkeit erforscht sowie das Ausmaß der ökologischen Nachhaltigkeit ermittelt werden. Die Partner LIKAT und Universität Bayreuth entwickeln, immobilisieren und testen neue Katalysatoren für die photokatalytische Dehydrierung bzw. die Direktcarbonylierung von Alkanen und die Hydroformylierung von Alkenen mit CO2. Ausgehend von kinetischen Untersuchungen dieser Projektpartner wird von Evonik Degussa GmbH ein Reaktionsmodell erstellt, welches die Basis für eine Reaktorauslegung im technischen Maßstab schaffen soll. Darüber hinaus sollen die notwendigen Prozesse zur Abtrennung der Wertprodukte H2 und 1-Buten sowie Valeraldehyd aus den Reaktionsgemischen modelliert und energetisch bewertet werden. Die Zusammenstellung von rechnerischen Modulen aus der Reaktormodellierung und der Trenntechnik und der Abgleich mit den kinetischen Untersuchungen liefert eine quantitative Beschreibung des Gesamtverfahrens. Begleitend sollen Life-Cycle-Assessments für die zu entwickelnden Verfahren durchgeführt sowie eine Potentialanalyse unter Berücksichtigung ökonomischer und politischer Rahmenbedingungen erstellt werden.
Das Projekt "Einsatz geothermaler Energie in der Fernwaermeversorgung - Elektrizitaetserzeugung - Stufe 1" wird vom Umweltbundesamt gefördert und von Energie- und Wasserversorgung Bruchsal GmbH durchgeführt. Objective: To tap a Bunter formation to supply heat to a sports centre, industrial buildings and housing. Expected characteristics of sandstone reservoir; depth: 2000-2500; flow-rate: 20-40 m3/h; temperature: 85-100 C; TDS: 70 G/l. Tests on superjacent Muschelkalk are to be carried out during drilling. Geothermal water will be exploited in cascade: first stage will bring temperature down from 100 to 70 C with pre-heating and vapourization for an organic rankine cycle to feed an isobutane steam turbine. To generate electricity, second stage will recover the water at 70 C for heating purposes and used in a bid to overcome deposit and corrosion problems. Profitability threshold is estimated to be 0.51 DM/L for fuel oil. Expected annual energy substitution is 6,000 MWh. General Information: This is a continuation of the Bruchsal project already supported by EEC contract DG XII A2 060. Directional well Bruchsal 1 drilled down to a final depth of 1,932 m between August and November 1983. Many difficulties were encountered: first side track at 1,274 m, technical casing 9' 5/8 to be cemented at 608 m, several faults drilled through mud losses at 1,735 m. Final well is cased in 7' liner cemented from the bottom to 1,877 m and hung from 1,573 m. Production levels are located in variegated sandstone formations. In December 1983, a pumping test of 5 days with a delivery rate of 10 m3/h indicated a transmissivity of 10 to 20 DM and a positive skin effects of 10. Water temperature is 97 C, TDS over 124 G/l, main production zone (80 per cent) is assumed by the lower levels. (1,853 m). Hydrogeological calculations prove a technical yield of the well may amount to 15 - 20 l/s. A second well had to be drilled for injection purposes due to high salinity and to prevent pressure drop in the reservoir. Achievements: The well Bruchsal 1 is located on a line parallel to the valley edge of the upper Rhine Valley and develop the geothermal waters of Permian and variegated Triassic sandstones. The well had crossed a faulty zone. The extracted brine is strongly mineralized with heavy metals and shows precipitations of ferrous hydroxide and MnO2 when oxygen added from the air. The main gas dissolved in water is carbon dioxide whose partial pressure is 12-15 bars in the reservoir. Isotopic analysis (14 C, 13 C, 3 H) shows that geothermal water has no connection with the current surface water cycle (precipitation).
Das Projekt "Durchfuehrung des PAAG-Verfahrens zur Ueberpruefung der Sicherheit von Stoerfall-Anlagen an einem praktischen Beispiel" wird vom Umweltbundesamt gefördert und von Landesanstalt für Immissionsschutz Nordrhein-Westfalen durchgeführt.
Das Projekt "Teilprojekt A: 'TG2, Erzeugung von Chemiegrundstoffen aus Biomasse" wird vom Umweltbundesamt gefördert und von Fraunhofer-Zentrum für Chemisch-Biotechnologische Prozesse durchgeführt. Das im Spitzencluster BioEconomy positionierte Projekt zur Herstellung von biobasierten Olefinen aus dem lignocellulosehaltigen Rohstoff Holz spiegelt das Konzept der nachhaltigen Nutzung biogener Rohstoffe wider. Der Fokus der Arbeiten liegt auf der Entwicklung neuer Prozess technologien und der Etablierung eines integrierten Verfahrens, das die Um wandlung von aus Lignocellulosehydrolysaten fermentativ gewonnen Alkoholen zu den korrespondierenden Olefinen abbildet. Mit den biobasierten Olefinen Ethylen, Propylen und Butenen stehen Rohstoffe für die weitere Verwertung insbesondere in der kunstoff-verarbeitenden Industrie zu Verfügung, um nachhaltig erzeugte Materialien und Werkstoffe herzustellen. Im Rahmen des Projekts werden von den Projektpartnern Fraunhofer, Linde Engineering Dresden und CRI Catalyst Arbeiten bezüglich des Prozessdesigns umgesetzt. Dies beinhaltet die Realisierung und Skalierung der biotechnologischen und chemischen Prozesse sowohl im Labor- als auch im Scale-up im Pilotmaßstab. Fraunhofer koordiniert und leitet das Verbundvorhaben.
Origin | Count |
---|---|
Bund | 94 |
Land | 2 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 84 |
Text | 9 |
Umweltprüfung | 2 |
License | Count |
---|---|
closed | 2 |
open | 90 |
unknown | 4 |
Language | Count |
---|---|
Deutsch | 96 |
Englisch | 14 |
Resource type | Count |
---|---|
Archiv | 4 |
Datei | 5 |
Dokument | 6 |
Keine | 72 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 54 |
Luft | 46 |
Mensch & Umwelt | 96 |
Wasser | 39 |
Weitere | 90 |