API src

Found 322 results.

Änderungen der Cant Speicherung und Änderungen in den Bildungsraten für Zwischen- Tiefen- und Bodenwasser im globalen Ozean, 1982 - 2015

Das Projekt "Änderungen der Cant Speicherung und Änderungen in den Bildungsraten für Zwischen- Tiefen- und Bodenwasser im globalen Ozean, 1982 - 2015" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Erdsystemwissenschaften, Institut für Meereskunde durchgeführt. Die erste Antragsphase war auf die Bildungsraten und die Speicherung von anthropogenem Kohlenstoff (Cant) im Antarktischen Zwischenwasser (AAIW) fokussiert. Mit Hilfe von Freon (CFC) Daten konnten wir eine signifikante Reduktion der AAIW Bildungsrate von den 1990ern zu den 2000ern Jahren feststellen. Dies führte zu einer geringeren Steigerung der Cant Speicherung als vom atmosphärischen Cant Anstieg und einem unveränderten Ozean zu erwarten war. Um den Schwierigkeiten mit den Randbedingungen auszuweichen (Pazifisches AAIW strömt über die Drake Passage auch in den Atlantik und weiter in den Indischen Ozean) planen wir nun ein globales Vorgehen um in allen Ozeanen die Bildungsraten und Cant Speicherungen in den Zwischen- Tiefen- und Bodenwassermassen zu berechnen. Darüber hinaus wird der Zeitraum bis 2015 ausgedehnt, und wo immer die Datenlage es zulässt, Pentaden- anstatt Dekadenmittelwerte gebildet. Verwendet wird der aktualisierte GlODAPv2 Datensatz und eigene Daten.Die Berechnungen aus den Beobachtungen werden mit den Ergebnissen eines wirbelauflösenden globalen Ozeanmodells (1/10 Grad) kombiniert. Das POP Modell (Los Alamos Laboratory Parallel Ocean Program) mit eines horizontalen Auflösung von 0.1 Grad und 42 Tiefenstufen wird für die letzten 20 Jahre mit einem realistischen Forcing angetrieben und enthält außerdem die Freone als Tracer. Neben dem Vergleich mit einem klimatologischen Antrieb wird das Modell zur Weiterentwicklung der Tracer-Methode verwendet wir z.B. die Unsicherheit von zu wenig Datenpunkten und der Extrpolationsroutine auf die Bildungsraten / Cant Speicherungen. Ein weiterer wichtiger Punkt wird die Bestimmung der TTDs aus Lagrange Trajektorien und der Vergleich mit TTDs aus Tracermessungen sein, sowie die Untersuchung der Rolle der Wirbel, der Vermischung durch Wirbel und der vertikalen Vermischung.

Integration von Totholz in Verfahren der Direktsaat von Weißtanne (Abies alba) und Stiel-Eiche (Quercus robur) zur Begründung stabiler, klimatoleranter Mischwaldökosysteme im Stadtwald Hildburghausen

Das Projekt "Integration von Totholz in Verfahren der Direktsaat von Weißtanne (Abies alba) und Stiel-Eiche (Quercus robur) zur Begründung stabiler, klimatoleranter Mischwaldökosysteme im Stadtwald Hildburghausen" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität-Jena, Institut für Geographie, Professur Bodenkunde durchgeführt. Im beantragten Vorhaben soll untersucht und bewertet werden, inwiefern Totholz in die Durchführung der Saat zur Etablierung klimatoleranter Mischwälder praktisch einbezogen werden kann und welche Effekte sich dadurch für die Speicherung von Kohlenstoff, den bodenchemischen Zustand, das Mikroklima, die Etablierung/Entwicklung der Saaten im Rahmen der Mischwaldbegründung und die Diversität der Pflanzen ergeben. Das Totholz stammt dabei aus Durchforstungen und wurde bisher verfahrenstechnisch bedingt auf die Rückgassen verbracht bzw. ist Kalamitätsholz. Durch die Einrichtung von Dauerbeobachtungsflächen wird hierzu auch eine mittel- bis langfristige ökologische und ökonomische Bewertung ermöglicht, sowie ein Flächenpool an Demonstrationsflächen für den Wissenstransfer generiert. Zudem werden Standorte die a) von besonderer Bedeutung für die Kohlenstoffspeicherung im Boden (Pseudogleye), b) basenarm und versauert also sensitiv für Nährstoffentzüge (podsolierte Braunerden) sowie c) aufgrund geringer Bodenmächtigkeit an Hängen besonders von klimawandelbedingter Reduktion der Sommerniederschläge betroffen sind, in die Versuche zur Mischwaldbegründung einbezogen. Dadurch können standortspezifische waldbauliche Handlungsempfehlungen die bodenschutz- und naturschutzfachliche Aspekte berücksichtigen abgeleitet werden. Verfahrenstechnisch soll im geplanten Vorhaben neben dem etablierten Zugmittel Pferd der Einsatz einer forstlichen Kleinraupe am Scheibenräumgerät zur Saatbettherstellung getestet werden. Dadurch wird der Vergleich der Auswirkungen auf den Boden sowie der Test der generellen Einsatzbarkeit auf Flächen mit Totholz ermöglicht. Die Untersuchungen beinhalten die Saat von Weißtanne und Stieleiche in 2 aufeinanderfolgenden Jahren auf insgesamt 24ha (12 Flächen). Jede Fläche ist durch eine Totholz- und eine Kontrollvariante gekennzeichnet. Die Entwicklung der Saaten, des Mikroklimas, des Bodens und der Pflanzendiversität wird quantitativ und wiederholt erhoben.

Teilprojekt: Bestimmung des 'endmembers' der Nd-Isotopie von nordatlantischem Tiefenwasser über den letzten glazialen Zyklus

Das Projekt "Teilprojekt: Bestimmung des 'endmembers' der Nd-Isotopie von nordatlantischem Tiefenwasser über den letzten glazialen Zyklus" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Geowissenschaften durchgeführt. Während des letzten Eiszeit-Zykluses wurde CO2 aus der Atmosphäre jahrtausendelang in den tiefen Ozeanen gebunden. Die ozeanische Wassermassenstruktur, die eine solche erhöhte Kohlenstoffspeicherung ermöglichte, ist jedoch weiterhin nicht bekannt. Inkonsistente Rekonstruktionsergebnisse sind größtenteils eine Folge der begrenzten. Insbesondere sind nur wenige Rekonstruktionen von Tiefenwassermassen-Struktur mittels des Neodym (Nd)-Isotopen-Proxys für die letzten 100.000 Jahren verfügbar. Als Selten Erden Elemente wird Nd nicht durch den biologischen Kreislauf beeinflusst, wodurch die Nd-Isotopenzusammensetzung des Meerwassers benutzt werden kann, um Änderungen des Kohlenstoffkreislaufs von der Zirkulation in der Tiefsee getrennt betrachten. Aufgrund des Unterschieds der Nd-Isotopensignaturen zwischen Nord- und Südwasser mehrfach über signifikant unterschiedliche Wassermassenstrukturen des Atlantiks in der Vergangenheit berichtet. Kürzlich wurden jedoch Prozesse identifiziert, die unabhängig von der Herkunft der Wassermasse, die archivierten Nd-Isotopensignaturen (vor allem in Verbindung mit benthischen Nepheloid-Schichten) verändern können und somit die Interpretation als Wassermassen-Tracer in Frage stellen. Diese Prozesse könnten erhebliche Auswirkungen auf paläo-ozeanographische Rekonstruktionen haben, da die meisten Studien bislang Nd-Isotopien unter der Annahme unveränderlicher endmember interpretierten. Gegenwärtig existiert jedoch kein Datensatz aus dem Nordatlantik, der den nördlichen endmember ausreichend genau repräsentiert und dabei den gesamten Glazialen Zyklus abdeckt. Die hier vorgeschlagene Studie wird die etablierte Methodik über den Nd-Isotopen-Proxy an der Universität Heidelberg nutzen und zielt darauf ab, diese kritische Datenlücke zu schließen, indem ein nördlicher Nd-Isotopen-endmember von einem Sedimentkern über die letzten 100.000 Jahre definiert wird. Der IODP-Kern U1313 aus dem subpolare Nordatlantik ist hierfür besonders geeignet, denn er verfügt u.a. über eine ausreichend hohe Sedimentationsrate und liegt außerhalb des Einflusses von benthischen Nepheloid-Schichten oder vulkanischem Material.

Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia

Das Projekt "Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia" wird vom Umweltbundesamt gefördert und von Universität Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich 14 - Geowissenschaften durchgeführt. In bog ecosystems, vegetation controls key processes such as the retention of carbon, water and nutrients. In northern hemispherical bogs, a shift from Sphagnum- to vascular plant-dominated vegetation is often traced back to Climate Change and increased anthropogenic nitrogen deposition and coincides with substantially reduced capacities in carbon, water and nutrient retention. In southern Patagonia, bogs dominated by Sphagnum and vascular plants coexist since millennia under similar environmental settings. Thus, South Patagonian bogs may serve as ideal examples for the long-term effect of vascular plant invasion on carbon, water and nutrient balances of bog ecosystems. The contemporary balances of carbon and water of both a bog dominated by Sphagnum and vascular plants are determined by CO2- H2O and CH4 flux measurements and an estimation of lateral water losses as well as losses via dissolved organic and inorganic carbon compounds. The high time resolution of simultaneous eddy covariance measurements of CO2 and H2O in both bog types and the strong interaction between climatic variables and the physiology of bog plants allow for direct comparisons of carbon and water fluxes during cold, warm, dry, wet, cloudy or sunny periods. By the combination with leaf-scale measurements of gas exchange and fluorescence, plant-physiological controls of photosynthesis and transpiration can be identified. Long-term peat accumulation rates will be determined by carbon density and age-depth profiles including a characterization of peat humification characteristics. A reciprocal transplantation experiment with incorporated shading, liming and labeled N addition treatments is conducted to explore driving factors affecting competition between Sphagnum and vascular plants as well as the interactions between CO2-, CH4-, and water fluxes and decisive plant functional traits affecting key processes for carbon sequestration and nutrient cycling. Decomposition rates and driving below ground processes are analyzed with a litter bag field experiment and an incubation experiment in the laboratory.

Tropische Bodenkohlenstoffdynamik im Bezug zur Variabilität von Bodengeochemie und Landnutzung entlang erosiver Störungsgradienten (TropSOC)

Das Projekt "Tropische Bodenkohlenstoffdynamik im Bezug zur Variabilität von Bodengeochemie und Landnutzung entlang erosiver Störungsgradienten (TropSOC)" wird vom Umweltbundesamt gefördert und von Universität Augsburg, Institut für Geographie durchgeführt. Die Reaktion von Böden auf erosionsbedingte Störungen ist eine der großen Unsicherheiten bei der Vorhersage von zukünftigen Treibhausgasflüssen von Böden zur Atmosphäre in Erdsystemmodellen. Das tropische Afrika ist dabei ein wichtiger globaler Hotspot von Klima- und Landnutzungswandel. Schnell wachsende Bevölkerung, Abholzung der Primärwälder zur Schaffung von Ackerflächen sowie die damit einhergehende Bodendegradation stellen die Region vor große Herausforderungen. Es wird erwartet, dass dort noch in diesem Jahrhundert bedeutende Änderungen sowohl in Bezug auf biogeochemische Kreisläufe in Böden, als auch den Fluss von Kohlenstoff (C) zwischen Boden, Vegetation und der Atmosphäre auftreten werden. Da sich der Großteil unseres Prozessverständnisses des Kohlenstoffzyklus aus den Klimazonen der mittleren Breiten ableitet, ist unklar wie sich die Kohlenstoffdynamik in den Tropen entwickeln wird. Es ist wichtig, diese Wissenslücke zu füllen, da tropische Ökosysteme Dienstleistungen von globaler Bedeutung übernehmen, wie zum Beispiel der Kohlenstoffspeicherung in Pflanzen und Böden, Biomasseproduktion und letztlich Lebensmittelversorgung der Region. Ziel des vorgeschlagenen Projektes TROPSOC ist es daher ein mechanistisches Verständnis der Kohlenstoffsequestrierung und -mineralisierung in Böden des tropischen Afrikas zu entwickeln. Die Studienflächen im östlichen Bereich des Kongo-Einzugsgebietes bieten eine einzigartige Kombination aus geologisch unterschiedlichem Ausgangsmaterial für die Bodenbildung und verschiedenen Ebenen der Störung durch den Menschen, welche unter tropisch-feuchtem Klima stattfindet. TROPSOC wird wesentlich dazu beitragen, die folgenden Fragen zu beantworten: 1. Wie werden sich Kohlenstoffflüsse und -speicherung in tropischen Systemen zwischen Böden, Pflanzen und der Atmosphäre entwickeln und unterscheiden mit Bezug auf die Steuerungsfaktoren: Geologie, Boden, Störungen durch den Menschen und Topographie? 2. Wie beeinflusst die Biogeochemie von tropischen Böden die Schwere der erosiven Störung des tropischen Kohlenstoffzyklus? 3. Wie kann man die Kontrollmechanismen der Bodenkohlenstoffdynamik in einer räumlich expliziten Weise modellieren? TROPSOC wird maßgeblich zum besseren Verständnis der Faktoren beitragen, welche die räumliche Verteilung und zeitliche Dynamik von organischen Kohlenstoff in tropischen Böden steuern. TROPSOC wird Daten und Modelle erzeugen welche die Lücke zwischen lokalem Prozessverständnis und großräumlicher Modellierung des Kohlenstoffzyklus in tropischen Böden schließt. Dies wird letztlich dazu beitragen, die Unsicherheit im Zusammenhang mit terrestrischen Kohlenstoffflüssen und der Reaktion von Böden auf Störungen zu reduzieren, was eines der größten Probleme in aktuellen Erdsystemmodellen und bei der Beurteilung von Ökosystemdienstleistungen darstellt.

Führt eine gesteigerte Siliziumverfügbarkeit zu eine Erhöhung der Mineralisierung von organischem Material in Niedermooren?

Das Projekt "Führt eine gesteigerte Siliziumverfügbarkeit zu eine Erhöhung der Mineralisierung von organischem Material in Niedermooren?" wird vom Umweltbundesamt gefördert und von Westfälische Wilhelms-Universität Münster, Institut für Landschaftsökologie durchgeführt. Silizium (Si) spielt eine wichtige Rolle im globalen Kohlenstoffkreislauf. Die Si-Verfügbarkeit in Ökosystemen ist dabei sehr unterschiedlich, abhängig von Ökosystemtyp, Ausgangsgestein, Vegetation und weiteren Faktoren. Aktuelle Forschung hat gezeigt, dass die Si-Verfügbarkeit entscheidend für Nährstoffgehalt und Nährstoffstöchiometrie von pflanzlicher Streu ist; besonders deutlich ist dieser Zusammenhang in Gräser-dominierten Systemen. Bedeutend in dem Zusammenhang ist eine gesteigerte Abbaurate von organischem Material bei gesteigerter Si-Verfügbarkeit. Pflanzenstreu mit geringen Nährstoffgehalten wird bekanntermaßen langsamer abgebaut als nährstoffreiche Streu. Allerdings konnte kürzlich gezeigt werden, dass nährstoffarme Streu mit hohen Si-Gehalten schneller abgebaut wird als nährstoffreiche Streu mit wenig Si. Dabei wurde gleichzeitig durch die Erhöhung des Si-Gehaltes der Streu die Biomasse der abbauenden Pilze stark reduziert. Dies beweist die Bedeutung von Si für den Kohlenstoffkreislauf und die mikrobielle Abbaugemeinschaft in von Gräsern dominierten Ökosystemen. Niedermore, als wichtige Kohlenstoffspeicher und bedeutende Treibhausgas-emittenden, sind solche von Gräsern dominierten Ökosysteme mit einem potentiell hohen Einfluss von Si auf den Kohlenstoffkreislauf. Eine Vorabstudie, welche den Einfluss von Si auf den Kohlenstoffkreislauf in einem Niedermoor untersuchte, zeigte eine verstärkte Respiration mit einer Vordopplung der Methangehalte im Torfkörper auf Si gedüngten Flächen. Allerdings wurde gleichzeitig zu den erhöhten Respirationsraten auch ein Anstieg der Phosphorgehalte (P) in der Bodenlösung gemessen. Eine Erhöhung des verfügbaren P führt bekanntermaßen ebenfalls zu einer Erhöhung der Respiration. Das Ziel des beantragten Projektes ist die direkten Effekte von Si auf den Kohlenstoffkreislauf von den indirekten Effekten (durch die Si bedingte P-Mobilisierung) zu trennen und eine Quantifizierung beider Prozesse vorzunehmen. Unsere Hypothesen sind (i) eine höhere Si Verfügbarkeit führt zu einer Steigerung der Respiration organischer Substanz (Torf), durch (ii) direkte Si-Effekte und indirekte Si-Effekte durch eine Steigerung der P-Verfügbarkeit, (iii) die Steigerung der Respiration durch Si wird vorrangig durch Bakterien als durch Pilze erzielt und (iv) eine Steigerung der Si Verfügbarkeit führt zu einer Steigerung von P und N Verfügbarkeit, Umsatz und Aufnahme durch Pflanzen und damit zu labilerer Streu. Die Mechanismen zu verstehen auf welche Weise Si den Kohlenstoffkreislauf in Niedermooren beeinflusst ist ein wichtiger Teil eines verbesserten Verständnisses des terrestrischen Kohlenstoffkreislaufs.

Fusion von Radar und Lidar Satellitendaten zur großskaligen quantitativen Bestimmung von Waldstrukturparametern durch modellbasierte und KI-Verfahren

Das Projekt "Fusion von Radar und Lidar Satellitendaten zur großskaligen quantitativen Bestimmung von Waldstrukturparametern durch modellbasierte und KI-Verfahren" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Department für Geographie durchgeführt. Wälder sind wichtige Kohlenstoffspeicher und spielen daher eine entscheidende Rolle bei der Transformation zur CO2-Neutralität. Entscheidend für das Monitoring der Wälder auf der globalen Skala ist die Entwicklung von robusten Fernerkundungsmethoden zur Abschätzung der Biomasse. Traditionelle Verfahren verwenden hierzu Transferfunktionen zwischen Waldhöhe und Biomasse (H2B-Allometrie), wobei erstere z.B. aus Synthetic Aperture Radar (SAR) Daten und zweitere oft aus Lidar Daten abgeleitet werden. In Zukunft werden zur Ableitung von Waldstruktur und -höhe auch Daten der BIOMASS-Mission zur Verfügung stehen, deren Frequenz (P-Band) niedriger und deren räumliche Auflösung gröber ist als die der bisher für derartige Verfahren verwendeten SAR-Daten. Bezüglich eines Monitorings der Biomasseänderung in Wäldern werden bisher absolute Änderungen zwischen zwei Aufnahmezeitpunkten gebildet. Dies hat den Nachteil eines potentiell größeren Fehlers, da sich die Fehler der beiden Schätzungen addieren. Daher verfolgt dieses Projekt zunächst das Ziel differentielle Änderungen in der Biomasse zu berechnen durch die Entwicklung einer 'H2'B-Allometrie. Das zweite Ziel des Projektes ist, sowohl die Bestimmung der Biomasse als auch die Änderung dieser auf BIOMASS Daten unter Entwicklung von KI-Modellen zu übertragen.

Kohlenstoffspeicherung im Boden naturnaher Buchenwälder - Wasserhaushalt und Totholz als entscheidende Steuerfaktoren in einem sich verändernden Klima

Das Projekt "Kohlenstoffspeicherung im Boden naturnaher Buchenwälder - Wasserhaushalt und Totholz als entscheidende Steuerfaktoren in einem sich verändernden Klima" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. Naturnahe Waldwirtschaft oder ein völliges Einstellen der Bewirtschaftung sollte sich positiv auf die Kohlenstoff (C)-Speicherung der Wälder auswirken. Allerdings erfolgen derzeit dramatische Änderungen im Boden- und Standortswasserhaushalt (lange und intensive Trockenperioden, Starkniederschläge) mit unbekannten Auswirkungen auf die C-Speicherung z.B. in naturnahen Buchenwäldern. So ist weitgehend unbekannt, wie sich eine Steigerung an ober- und unterirdischem Totholz durch Nutzungsverzicht auf die langfristige C-Speicherung im Boden in Abhängigkeit von der Bodenfeuchtedynamik auswirkt und welche Rückkopplungsreaktionen auf den Bodenwasserhaushalt zu erwarten sind. Die Wechselwirkungen zwischen verfügbarem Bodenwasser, Totholz, lebenden Bäumen mit ihren Wurzelsystemen und der C-Speicherung im Boden sind unter sich stark verändernden Umweltbedingungen wenig erforscht. Vor diesem Hintergrund soll im 'Buchenwaldgebiet Kossa' in der Dübener Heide (NW Sachsen) quantifiziert werden, wie räumlich-zeitliche Muster in der Bodenfeuchte die ober- und unterirdische C-Speicherung beeinflussen. Natürliche Gradienten im Standortswasserhaushalt werden genutzt, um die Folgen der klimawandelbedingten Änderungen im Feuchteregime auf die C-Speicherung der Buchenwälder zu erfassen und daraus Szenarien für die zukünftige Entwicklung abzuleiten. Im Fokus des interdisziplinären Forschungsansatzes steht die Quantifizierung der Auswirkungen eines veränderten Bodenwasserhaushalts auf die Wuchsleistung der Rotbuchen (ober- und unterirdische Biomasse), das Totholzaufkommen sowie die langfristige C-Speicherung im Boden. Gleichzeitig soll geklärt werden, welche Rückkopplungen eine eventuelle Erhöhung der organischen Bodensubstanz durch Totholz auf die Bodenfeuchtedynamik hat. Hierfür wird ein langfristiges, integriertes Monitoring wichtiger Standorts- und Bestandesparameter mit Freilandexperimenten, modernsten Analysemethoden im Labor sowie Modellierungsansätzen kombiniert.

Teilvorhaben 2: Holzverwertung, Kohlenstoffspeicher und Mikrobiom;

Das Projekt "Teilvorhaben 2: Holzverwertung, Kohlenstoffspeicher und Mikrobiom;" wird vom Umweltbundesamt gefördert und von Julius-Maximilians-Universität Würzburg, Lehrstuhl für Tierökologie und Tropenbiologie (Zoologie III), Ökologische Station Fabrikschleichach durchgeführt. Durch die immer weiterwachsende Weltbevölkerung und die damit verbundene Intensivierung der Landnutzung steigt der Druck auf Waldökosysteme stetig. Vor diesem Hintergrund sind unkalkulierbare Störungen wie Waldbrände, Überschwemmung oder Massenvermehrungen von Schadinsekten mit hohen ökonomischen Wertverlusten verbunden. Andererseits sind natürliche Störungen, wie Borkenkäferausbrüche, Windwürfe oder Waldbrände mit zahlreichen positiven Effekten auf die Biodiversität und Strukturvielfalt im Wald verbunden. Im Gegensatz dazu ist die Aufarbeitung von Störungsflächen meist mit erheblichen Biodiversitätsverlusten und einer Verschlechterung vieler Ökosystemfunktionen. Die Anzahl und das flächige Ausmaß von natürlichen Störungen haben in den vergangenen Jahrzehnten massiv zugenommen. Im Rahmen von ÖkoKala werden Strategien für einen ökologisch und ökonomisch nachhaltigen Umgang mit Kalamitätsholz entwickelt. Konkret werden Tradeoffs zwischen einer thermischen Nutzung, Holzabbau und ökologischer Bedeutung von Kalamitätsholz untersucht. Durch ein standardisiertes, wissenschaftliches Untersuchungsdesign wird dabei die Generalisierbarkeit der Daten über eine breite Auswahl an Standorten und Waldbesitzerformen sichergestellt. Basierend auf bestehendem Fachwissen und auf den Erkenntnissen des Projekts werden Handlungsempfehlungen und Bewertungsschemata für den Umgang mit Kalamitätsflächen und Kalamitätsholz aus gesamtheitlicher Sicht von ökonomischen und ökologischen Aspekten erstellt.

Biological Regulation of Subsoil C-cycling under Field Conditions

Das Projekt "Biological Regulation of Subsoil C-cycling under Field Conditions" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Bodenbiologie durchgeführt. The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.

1 2 3 4 531 32 33