API src

Found 93 results.

Related terms

Markt für Nickel, Klasse 1

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.

GW-Messstelle Boral Calcit 3

Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle Boral Calcit 3. Leiter: Karbon

GW-Messstelle Boral Calcit 1

Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle Boral Calcit 1. Leiter: Karbon

GW-Messstelle Boral Calcit 2

Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle Boral Calcit 2. Leiter: Karbon

GW-Messstelle Boral Calcit GM1neu

Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle Boral Calcit GM1neu.

Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples

Das Projekt "Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The results of the first funding period, particularly the proof of several weakening and hardening mechanisms operating in the fault gouge of four SAFOD core samples (e.g. amorphous material, nano-scale pore spaces, dissolution-precipitation processes, intracrystalline plasticity) inspired a more detailed study of microstructures in order to specify the cause of mechanical weakness along the San Andreas Fault (SAF). Therefore we applied for and received four additional core samples from different depths and different distances to the fault contact. In particular, we will focus on: - The analysis of dominant microstructures in the new SAFOD samples. Based on our previous experience we will predominantly use the transmission electron microscopy (TEM). These studies have proven to be the most powerful tool for analyzing microstructures. The cutting of foils with the focused ion beam technique (FIB) allows identifying microstructures down to the nm scale without damage. - The observed microstructures will be interpreted in view of their implication for fault weakening mechanisms integrating previous results of the core samples from the first funding period. - The observed agglomeration of flocculated clay particles in previous samples calls for further detailed TEM investigations of clay minerals. - Some vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). We will measure dislocation and twin densities in calcite veins in the new sample set. The results will be used for stress estimations based on paleo-piezometric relationships. - First results of stable isotope analyses of vein calcites provide indications that the fluids were dominantly derived from deeper sources. We will further analyze stable isotopes with the aim to characterize the origin of fluids penetrating the fault gouge. - Mercury porosimetry and the BET gas adsorption methods will be used to measure the connected rock porosity pore volume and pore surface areas of our new samples. Porosity data will be used to roughly estimate permeability. - SAFOD microstructures will be compared to samples recently obtained from the Taiwan Chelungpu fault Drilling Project (TCDP).

Sub project: Early Paleogene deep-water overturning in the South Atlantic - implications from the ODP Leg 208 Walvis Ridge depth transect

Das Projekt "Sub project: Early Paleogene deep-water overturning in the South Atlantic - implications from the ODP Leg 208 Walvis Ridge depth transect" wird vom Umweltbundesamt gefördert und von Universität Leipzig, Institut für Geophysik und Geologie, Abteilung Geologie durchgeführt. The aim of the proposed project is to reconstruct the circulation of deep- and bottom-water masses in the eastern South Atlantic during the Cenozoic. Particular attention will be laid on the nature and behavior of the deep-water masses during extreme climatic situations and on their response to abrupt environmental and climatic changes in the late Paleocene to early Eocene. This time interval is characterized by short climatic excursions overriding a long-term warming trend. The climatic extremes had a significant impact on the oceans, e.g. a shoaling of the calcite compensation depth (CCD) of more than 2000 m at the Paleocene/Eocene boundary in the Walvis Ridge region. The Paleogene sediments recovered during OOP Leg 208 at Walvis Ridge allow detailed reconstructions of timing and intensity of such perturbations and reorganization of the deep- and bottom water masses over a paleodepth range of more than 2000 m. In our study we will combine sedimentological and clay mineralogical investigations. The current preinvestigations aim in a reconstruction of the long-term trend in the development of the oceanic circulation. They will provide background information on the changes associated with the transitions from an intermediate Paleogene climate to the Eocene greenhouse, the subsequent cooling into the Oligocene icehouse and Miocene cooling events to evaluate the significance of the observed extreme climatic events in the early Paleogene.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von W. Neudorff GmbH KG durchgeführt. Das Verbundvorhaben der Partner Bind-X GmbH und W. Neudorff GmbH KG zielt auf die Erforschung, Etablierung und Validierung der Biomineralisation als effektive, nicht-chemische und zulassungsfreie Herbizidalternative für den Produktionsgartenbau. Unter Biomineralisation versteht man einen natürlichen biogeochemischen Prozess der Substratverfestigung, der auf der bakteriellen Abscheidung des Minerals Calcit (bzw. anderer CaCO3-Modifikationen) basiert. Dieser natürliche Prozess findet bei ubiquitär vorhandenen Bodenbakterien weltweit in Böden und anderen Habitaten statt. Durch die im Vorhaben angestrebte, zielgerichtete Mineralisation wird von den eingesetzten Bakterien eine wasser- und luftdurchlässige, mechanische Barriere unter der Bodenoberfläche gebildet. Diese Barriere soll das Durchbrechen von Unkräutern verhindern, während die gepflanzten oder ausgekeimten Kulturpflanzen nicht in ihrem Wachstum beeinträchtigt werden. Kommerzielle Anwendungen der Biomineralisation existieren bereits, konzentrieren sich allerdings auf Anwendungen in der Staubbindung (v.a. im Bergbau). Für eine Anwendung im Produktionsgartenbau sind diese Anwendungen u.a. aufgrund der hohen Kosten, bezogen auf die ausgebrachte Fläche, nicht geeignet. Das Vorhaben beinhaltet daher die Auswahl und Untersuchung neuartiger Formulierungen sowie einer möglichen Applikationstechnik für die Biomineralisation, um die Grundlage für eine kompetitive Anwendbarkeit der Biomineralisation im Produktionsgartenbau zu etablieren. Das Vorhaben schafft so die grundlegenden Voraussetzungen für die Entwicklung eines innovativen, anwendungsfreundlichen und vor allem zulassungsfreien Produkts zur effizienten und wirtschaftlichen Unkrautbekämpfung, das mit nur gering modifizierter Landmaschinentechnik ausgebracht werden kann.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE) durchgeführt. Ziel des Vorhabens ist es einen Beitrag zur sicheren Endlagerung hochradioaktiven Abfalls zu leisten. In diesem Kontext wollen wir ein auf atomarer Skala basierendes Prozessverständnis der Wechselwirkung von Actiniden und Spaltprodukten mit endlagerrelevanten Mineralen bzw. Mineraloberflächen erlangen, um so Retentionsmechanismen auf langen Zeitskalen zu verstehen. Dazu sind innerhalb des Gesamtprojekts folgende Arbeitspakete vorgesehen: a) Dreiwertige Actinide Pu, Am, Cm (Phosphate, Carbonate, Eisen(hydr)oxide) b) Vierwertige Actiniden Th, U, Np, Pu (Silicate, Sulfate, Carbonate, Phosphate, Sulfide, Eisen(hydr)oxide, LDH-Phasen) a) Cm(III), Am(III) und Eu(III) dotierte Calcite werden synthetisiert und die Besetzung der unterschiedlichen 'sites' wird mit Hilfe der TRLFS quantifiziert. Die maximale Beladung der Sekundärphase mit Actiniden wird aus diesen Daten extrapoliert werden. Mit dreiwertigen Actiniden und Lanthaniden dotierte Calcit Einkristalle werden nach ihrer Synthese an der Beamline in Argonne untersucht. Mit diesen Röntgenreflektometriemessungen wird die Struktur der Oberfläche der Calcitkristalle bestimmt. b) Th(IV) und Np(IV) dotierte Calcite werden im MFR synthetisiert. Einbau sowie Freisetzung der Actiniden wird quantifiziert und modelliert. Der Einfluss von Fremdionen auf die Bildung der An(IV):Calcit 'solid solutions' wird mit Hilfe von SEM und AFM untersucht. Durch XAS werden die Strukturparameter der Einbauspezies bestimmt.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Bind-X GmbH durchgeführt. Das Verbundvorhaben der Partner Bind-X GmbH und W. Neudorff GmbH KG zielt auf die Erforschung, Etablierung und Validierung der Biomineralisation als effektive, nicht-chemische und zulassungsfreie Herbizidalternative für den Produktionsgartenbau. Unter Biomineralisation versteht man einen natürlichen biogeochemischen Prozess der Substratverfestigung, der auf der bakteriellen Abscheidung des Minerals Calcit (bzw. anderer CaCO3-Modifikationen) basiert. Dieser natürliche Prozess findet bei ubiquitär vorhandenen Bodenbakterien weltweit in Böden und anderen Habitaten statt. Durch die im Vorhaben angestrebte, zielgerichtete Mineralisation wird von den eingesetzten Bakterien eine wasser- und luftdurchlässige, mechanische Barriere unter der Bodenoberfläche gebildet. Diese Barriere soll das Durchbrechen von Unkräutern verhindern, während die gepflanzten oder ausgekeimten Kulturpflanzen nicht in ihrem Wachstum beeinträchtigt werden. Kommerzielle Anwendungen der Biomineralisation existieren bereits, konzentrieren sich allerdings auf Anwendungen in der Staubbindung (v.a. im Bergbau). Für eine Anwendung im Produktionsgartenbau sind diese Anwendungen u.a. aufgrund der hohen Kosten, bezogen auf die ausgebrachte Fläche, nicht geeignet. Das Vorhaben beinhaltet daher die Auswahl und Untersuchung neuartiger Formulierungen sowie einer möglichen Applikationstechnik für die Biomineralisation, um die Grundlage für eine kompetitive Anwendbarkeit der Biomineralisation im Produktionsgartenbau zu etablieren. Das Vorhaben schafft so die grundlegenden Voraussetzungen für die Entwicklung eines innovativen, anwendungsfreundlichen und vor allem zulassungsfreien Produkts zur effizienten und wirtschaftlichen Unkrautbekämpfung, das mit nur gering modifizierter Landmaschinentechnik ausgebracht werden kann.

1 2 3 4 58 9 10