API src

Found 32 results.

Teilvorhaben: Weiterentwicklung der Anlagentechnik

Das Projekt "Teilvorhaben: Weiterentwicklung der Anlagentechnik" wird vom Umweltbundesamt gefördert und von Manz AG durchgeführt. Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.

Teilvorhaben: Material- und Prozessoptimierung, Kosten

Das Projekt "Teilvorhaben: Material- und Prozessoptimierung, Kosten" wird vom Umweltbundesamt gefördert und von NICE Solar Energy GmbH durchgeführt. Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.

Teilvorhaben: Materialwissenschaftliche Charakterisierung

Das Projekt "Teilvorhaben: Materialwissenschaftliche Charakterisierung" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Elektronik und der Energietechnologie (WW6) durchgeführt. Das Verbundvorhaben befasst sich mit der gezielten Verbesserung der Ertragsparameter bei der CIGS Absorberbildung mittels industrierelevanter Prozesse. Untersucht wird die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit und Defektdichte im Halbleiter und an den Grenzflächen und die Wechselwirkungen des Absorbers mit den weiteren Schichten. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Im Teilvorhaben der FAU erfolgt die materialwissenschaftliche Charakterisierung der Bauteile. Beteiligt sind der Lehrstuhl für Kristallographie und Strukturphysik (Prof. Hock) und das Kristallzüchtungslabor am Department Werkstoffwissenschaften 6 (Prof. Wellmann). An beiden Institutionen erfolgt eine umfassende Charakterisierung von der Oberseite der Absorber (mit und ohne Pufferschichten), von der Unterseite der vom Rückkontakt abgelösten Absorber und an der Oberseite des freigelegten Rückkontaktes. Der Querschnitt der Absorber ist in der Rasterelektronenmikrokopie zugänglich. Alle Ergebnisse der Charakterisierung werden den Prozessparametern bei der Schichtherstellung und den Ertragsparametern zugeordnet. Bei der Charakterisierung mittels Rasterelektronenmikroskopie (REM) werden der Schichtaufbau der Solarzelle, das mikrokristalline Gefüge des Absorbers und des Rückkontaktes, die Grenzfläche zwischen ihnen und die Oberflächenrauigkeit und Poren erfasst. Die im REM integrierten Detektoren für energiedispersive Röntgenfluoreszenzanalyse (EDX) und Kathodolumineszenz erlauben es, die chemische Zusammensetzung des Absorbers tiefenabhängig (Gradienten der Bandlücke) und über die Fläche (Inhomogenitäten der Bandlücke) qualitativ und quantitativ zu bestimmen und Fremdphasen zu erkennen. Räumlich und spektral aufgelöste Photolumineszenzmessungen dienen der Bestimmung der Bandlücke und ergänzen die EDX-Messungen. Neben den Eigenschaften von Absorber und Rückkontakt werden auch die Bereiche nahe den P1 Laserlinien auf Veränderungen und Beschädigungen untersucht. Die kristallografisch-strukturellen Eigenschaften der Schichten werden mittels Röntgenbeugungsmethoden untersucht. Dies umfasst die röntgenographische Phasenanalyse, die Verfeinerung der Strukturparameter der kristallinen Phasen, Messungen unter streifendem Einfall sowie Eigenspannungsmessungen und Messungen von Vorzugsorientierungen der Kristallite (Textur) an den Schichten. Durch den streifenden Einfall kann die Tiefenabhängigkeit der Elementverteilung im Absorber bestimmt werden. Eigenspannungsmessungen und Messungen der Textur sind besonders für die Eigenschaften der Rückelektrode wichtige Materialparameter.

Teilvorhaben: Ertragsoptimierung für CIGSSe aus Durchlaufofen

Das Projekt "Teilvorhaben: Ertragsoptimierung für CIGSSe aus Durchlaufofen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Berlin für Materialien und Energie GmbH durchgeführt. Spezifisch für die CIGS-Technologie soll im Verbundvorhaben eine gezielte Verbesserung der CIGS Absorberbildung mittels industrierelevanter Prozesse, sowie der Wechselwirkungen des Absorbers mit den weiteren Schichten für verbesserte Ertragsparameter im Vordergrund stehen. Weiterhin soll gezielt für CIGS Module eine verbesserte Abbildung des Ertrags in Prognose und Messung erreicht werden. Insbesondere die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit oder Defektdichte im Bauteil wird erstmals untersucht. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Identifizierte Absorber werden zu geeigneten Testmodulen fertiggestellt, die dann in Freifeldanlagen installiert und getestet werden, auch zur Nachstellung gebäudeintegrierter Photovoltaik (BIPV). Als Ergebnis soll eine deutliche Verbesserung der Ertragsparameter der Solarmodule mit industriell umsetzbaren Prozessen gezeigt werden.

Teilvorhaben: Industrieller Kobedampfungsprozess

Das Projekt "Teilvorhaben: Industrieller Kobedampfungsprozess" wird vom Umweltbundesamt gefördert und von Manz CIGS Technology GmbH durchgeführt. Zentrales Thema der Forschungsarbeiten ist die Verkürzung der CIGS-Depositionszeit mit dem Ziel die Wettbewerbsfähigkeit der CIGS-Dünnschichttechnologie zu erhalten und zu steigern. Dies wird unterstützt durch die computerbasierte Beschreibung wichtiger Teilprozesse wie Diffusion, Kristallbildung, Wachstumskinetik, Gleichgewichtszustände, Alkali-Austausch, Alkali-Einbau ins Gitter, etc. Parallel dazu erfolgt die experimentelle Umsetzung in einer eigens für schnelle Abscheideprozesse optimierten Pilotanlage. Durch aufwändige analytische Verfahren und Untersuchungen werden Teilprozesse und Effekte des schnellen Wachstums und des Alkali-Einbaus detailliert erforscht. Hinzu kommen Beiträge zur Auswahl und zur experimentellen Verifizierung eines p-Verbindungshalbleiters zur Vorbereitung der monolithischen Tandem-Verschaltung (z. B. Chalkopyrit/Perovskit).

Teilvorhaben: Alkalibehandlung der CIGS Absorberoberfläche und monolithisch integrierte Tandem Zelle (p-TCM)

Das Projekt "Teilvorhaben: Alkalibehandlung der CIGS Absorberoberfläche und monolithisch integrierte Tandem Zelle (p-TCM)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Berlin für Materialien und Energie GmbH durchgeführt. Untersuchung des Einflusses einer Behandlung des Chalkopyritabsorbers (CIGS) mit Alkalimetallen bzw. deren Verbindungen auf die Solarzelleneffizienz bei schnellen Depositionsschritten. Entwicklung eines transparenten, p-Halbleiters als Voraussetzung für die Herstellung einer Tandemsolarzelle mit einer CIGS Bottom-Zelle und einer Top-Zelle aus einem Halbleiter mit großer Bandlücke, z.B. Methylammoniumbleiiodid. Unterstützung der vorgenannten Ziele und aller Projektpartner durch spezielle Analytik, z.B. am Elektronenspeicherring BESSY II.

Teilvorhaben: CIGS-Depositionsgeschwindigkeit und Alkali-Einbau

Das Projekt "Teilvorhaben: CIGS-Depositionsgeschwindigkeit und Alkali-Einbau" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Im Teilprojekt des ZSW soll durch experimentelle Realisierung von schnellen CIGS Beschichtungsprozessen im Koverdampfungsverfahren mittels einer Inline-Anlage Erkenntnisse über die Prozessführung gewonnen werden, die den Übertrag in die Produktion vorbereiten sollen. Die Erkenntnisse kommen dabei aus zwei großen Arbeitsbereichen, den Untersuchungen zum Einfluss von Alkalimetallen und zum Wachstumsverlauf schneller CIGS Prozesse.

Teilvorhaben: CIGS-Depositionsgeschwindigkeit und K-Einbau

Das Projekt "Teilvorhaben: CIGS-Depositionsgeschwindigkeit und K-Einbau" wird vom Umweltbundesamt gefördert und von Hochschule für Berufstätige Darmstadt GmbH durchgeführt. Definiertes Projektziel ist die Entwicklung robuster, insbesondere wettbewerbsfähiger und effizienter Prozesse für die industrielle Fertigung von CIGS-Dünnschichtsolarzellen. Ein wesentlicher Aspekt ist hierbei das Verständnis für die Funktion von Kalium im Rahmen der Dotierung mit Alkali und eine entsprechend optimierte Prozessführung. Als weiteres Projektziel ist die signifikante Erhöhung der Kristallisationsgeschwindigkeit im CIGS-Abscheideprozess zu nennen. Mit der Konzeptentwicklung einer CIGS-basierten Tandem-Zelle setzt dieses Verbundprojekt einen grundlegenden Anfang für zukünftige Arbeiten an der signifikanten Wirkungsgraderhöhung von CIGS-Solarzellen.

Teilvorhaben: Optimierung des CIGS-Depositionsprozesses durch hochauflösende Analytik und Ionenstrahlanwendungen

Das Projekt "Teilvorhaben: Optimierung des CIGS-Depositionsprozesses durch hochauflösende Analytik und Ionenstrahlanwendungen" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik durchgeführt. Der Beitrag der Friedrich-Schiller-Universität Jena (FSU Jena) im Verbundvorhaben wird in der umfassenden und grundlegenden Charakterisierung von Chalkopysritbasierten (CIGS)-Laborzellen und Teilschichten liegen, die vom Industriepartner Manz und den Verbundpartnern ZSW und HZB hergestellt werden sowie von Proben, die selbst nachpräpariert werden sollen. Weiterhin soll die Dotierung von Teilschichten durch (Niederenergie-) Ionenimplantation untersucht werden. Diese Arbeiten haben das Ziel, die Eigenschaften der bei schneller Prozessführung entstehenden Fremdphasen und des umgebenden Materials zu klären und so ein tieferes Verständnis der Diffusions- und Wachstumsprozesse unter diesen Herstellungsbedingungen zu erreichen. Zum anderen sollen durch Alkalinachbehandlung mittels gezielter Niederenergie-Ionenimplantation die wesentlichen Parameter gefunden werden, die für die Nachbehandlung entscheidend sind.

Teilvorhaben: Analyse und Modellierung der ertragsbeeinflussenden Prozesse

Das Projekt "Teilvorhaben: Analyse und Modellierung der ertragsbeeinflussenden Prozesse" wird vom Umweltbundesamt gefördert und von Universität Oldenburg, Institut für Physik, Arbeitsgruppe Energie- und Halbleiterforschung durchgeführt. Spezifisch für die CIGS-Technologie soll im Verbundvorhaben eine gezielte Verbesserung der CIGS Absorberbildung mittels industrierelevanter Prozesse, sowie der Wechselwirkungen des Absorbers mit den weiteren Schichten für verbesserte Ertragsparameter im Vordergrund stehen. Weiterhin soll gezielt für CIGS Module eine verbesserte Abbildung des Ertrags in Prognose und Messung erreicht werden. Insbesondere die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit oder Defektdichte im Bauteil wird erstmals untersucht. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Identifizierte Absorber werden zu geeigneten Testmodulen fertiggestellt, die dann in Freifeldanlagen installiert und getestet werden, auch zur Nachstellung gebäudeintegrierter Photovoltaik (BIPV). Als Ergebnis soll eine deutliche Verbesserung der Ertragsparameter der Solarmodule mit industriell umsetzbaren Prozessen gezeigt werden.

1 2 3 4