Ziel des vorliegenden Berichts war es, die beiden Optionen – der trockenen Entaschung/-schlackung und Nassentaschung/-schlackung im Wasserbad – hinsichtlich der Qualität der ausgelesenen Metalle und Mineralik experimentell zu untersuchen. Dazu wurden Aschen/Schlacken aus einer Abfallverbrennungsanlage nass und trocken ausgetragen und anschließend anhand aufbereitungstechnischer, metallurgischer sowie bautechnischer Charakterisierungsmethoden bewertet. Neben der klassischen Aufbereitung, wie beispielsweise Magnetscheidung, wurden im Labormaßstab neue Ansätze wie biologische und chemische Laugung sowie Bioflotation zur Metallrückgewinnung aus der Feinfraktion < 4 mm untersucht. Veröffentlicht in Texte | 99/2018.
Pluym, Nikola; Petreanu, Wolf; Weber, Till; Scherer, Max; Kolossa-Gehring, Marike International Journal of Hygiene and Environmental Health 227 (2020), Juni 2020, 113508; online 12. März 2020 7-Hydroxy-3,7-dimethyl-1-octanal, also known as 7-hydroxycitronellal (7-HC, CAS No. 107-75-5) is a synthetic fragrance widely used in cosmetic and hygiene products. Because of its wide spread use and its known sensitizing properties, 7-HC was selected as one of 50 chemicals within the frame of the cooperation project between the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the German Chemical Industry Association (VCI) to develop a suitable human biomonitoring (HBM) method in order to assess the exposure of the general population in Germany. Within this scope, the recently published analytical method for urinary 7-hydroxycitronellylic acid (7-HCA), the major metabolite of 7-HC, was applied to 329 24h-urine samples of young adults (20 to 29 years) collected between 2000 and 2018 and stored in the Environmental Specimen Bank (ESB). The widespread exposure to 7-HC as already observed in a pilot study with 40 volunteers could be confirmed with quantifiable concentrations of 7-HCA in all 329 study samples (mean: 14.9 ng/mL; median: 8.1 ng/mL). A significant, chronological decrease in 7-HCA levels was found for the monitored years (2000, 2004, 2008, 2012, 2015, 2018). The most pronounced decline occurred between 2000 and 2004 (means: 34.37 versus 23.31, medians: 20.97 versus 12.49 μg/24h; p < 0.01). On average, females exhibited higher levels of urinary 7-HCA compared to males (29.34 versus 17.21 μg/24h, p < 0.05). Based on the urinary 7-HCA excretion, the daily intake (DI) of 7-HC normalized for body weight (bw) was estimated. Over all sampling years, average DI in females was significantly higher compared to males (0.99 versus 0.46 μg/kg bw/d). Assuming dermal exposure as the main route of 7-HC intake, the mean DIs correspond to <0.1% of the derived no effect level (DNEL) of 1,100 μg/kg bw/d defined by the European Chemical Agency (ECHA). The presented results for the exposure to the widely used fragrance 7-HC in Germany can be substantiated by applying the described methodology to the representative cohort of the launched German Environmental Survey in adults (GerES VI). doi: 10.1016/j.ijheh.2020.113508
Göckener, Bernd; Fliedner, Annette; Rüdel, Heinz; Fettig, Ina; Koschorreck, Jan Science of The Total Environment 782 (2021), 146825; online 29. März 2021 Limnetic, marine and soil samples of the German environmental specimen bank (ESB) were analyzed for per- and polyfluoroalkyl substances (PFAS) using target analysis and a modified total oxidizable precursor (TOP) assay (direct TOP assay (dTOP)) that works without prior extraction. Target analysis determined ∑PFAS concentrations in bream livers of 8.7–282 μg kg−1 wet weight (ww) in 2019, with highest contaminations in the Rhine and lower Elbe. In bream fillet, concentrations were lower (<0.5–10.6 μg kg−1 ∑PFAS). Contamination of suspended particulate matter (SPM) was highest in the upper Elbe downstream the Czech border (5.5 μg kg−1 dry weight (dw) in 2018). Herring gull eggs from the North and Baltic Seas showed ∑PFAS levels around 53.0–69.6 μg kg−1 ww in 2019. In soil, concentrations ranged between <0.5 and 4.6 μg kg−1 dw with highest levels in the Dueben Heath near Leipzig and the low mountain range Solling. PFOS dominated in most samples. Of the targeted precursors, only FOSA, EtFOSAA, MeFOSAA, 6:2-FtS and 6:2 diPAP were found. Replacement chemicals (ADONA, HFPO-DA, F-53B) were not detected. The dTOP assay revealed that considerable amounts of precursors were present at most riverine sampling sites. Particularly high precursor concentrations were observed in samples from the Upper Elbe at the Czech border and the Upper and Middle Rhine. In herring gull eggs and most soil samples, though, concentrations of precursors were low. Time trend analysis showed decreasing trends for most detected PFAS since 2005. In SPM, however, C4-C6 perfluoroalkyl carboxylic acids seem to increase indicating growing use of precursors based on shorter fluorinated chains. The results demonstrate that target analysis detects only a minor fraction of the PFAS burdens in environmental samples. The dTOP assay can support risk assessment and chemical monitoring with more comprehensive exposure data of the actual contamination. doi: 10.1016/j.scitotenv.2021.146825
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of used Li-ion battery, hydrometallurgical treatment (GLO): Shredder, followed by a chemical treatment in order to separate the various fractions produced technologyComment of treatment of used Li-ion battery, pyrometallurgical treatment (GLO): Crushing of the batteries, followed by a neutralization and a processing step.
technologyComment of market for tap water (Europe without Switzerland): No comment present technologyComment of tap water production, conventional treatment (Europe without Switzerland): No comment present technologyComment of tap water production, conventional with biological treatment (Europe without Switzerland): Most frequent technology in tap water production facility in Quebec technologyComment of tap water production, direct filtration treatment (Europe without Switzerland): No comment present technologyComment of tap water production, microstrainer treatment (Europe without Switzerland): No comment present technologyComment of tap water production, ultrafiltration treatment (Europe without Switzerland): No comment present technologyComment of tap water production, underground water with chemical treatment (Europe without Switzerland): No comment present technologyComment of tap water production, underground water with disinfection (Europe without Switzerland): No comment present technologyComment of tap water production, underground water without treatment (Europe without Switzerland): No comment present
Average technology for the aluminium recycled (refined) in Europe
Average technology for the aluminium recycled in Europe
Das Projekt "Haltbarkeit von Holz" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holzbiologie und Holzschutz der Bundesforschungsanstalt für Forst- und Holzwirtschaft durchgeführt. Given that wood is a renewable raw material with low energy demand, and having regard to the economic importance of wood durability to the wood industry and the stronger ecological safety requirements of society, the main objective of this COST Action is to improve and consequently to increase the use of European wood by means of safer protection methods for enhancing its durability. This objective is of an interdisciplinary nature and comprises various fields of specific research work, covering natural durability and degradation mechanisms, application of chemicals including modification of wood to improve its durability, and the effect of treatment with respect to efficacy as well as undesirable side-effects including any such on health, safety, and environment. General Information/Current status: The Management Committee is chaired by Mr. Hubert Willeitner (D) with Mr. Marc Stevens (B) as Vice-Chair. The Action has three Working Groups; each of which contains a number of topical networks: WG 1: Optimising Natural Protection Mechanisms. Chaired by Professor Th. Nilsson from the University of Uppsala (S) and directed towards the basic understanding of wood degradation in order to develop new ways of retarding it. Networks: (A) - COST Euro index (The index is to be an indicator of the potential activity of wood fungi depending on the local microclimate) - Improvement of microbial resistance of painted wood - Copper-tolerant micro-organisms - Decay of wood in soil contact. WG 2: Improvement of Chemicals and Substrate Modification: Chaired by Dr. D. J. Dickinson, Imperial College of Science, Technology and Medicine, London (UK), studies the improvement of existing products and technologies, as well as the development of new methodologies, in order to obtain higher durability. Networks: (B) - Wood modification and metal carboxylates - Resins and water repellents - Creosote: losses to soil and performance - European field trials - Borates. WG 3: Environmental Impact: Chaired by Mr. G. Ozanne, Centre Technique du Bois et de l'Ameublement, Paris (F), studies all aspects of effects on health, safety, and environment, including the efficacy of the treatment. It also handles methods of enabling recycling or safe disposal, including soil decontamination, of treated wood and treatment chemicals. Networks: (C) - Remediation - Disposal - Health - Fate-air-workplace - Impact - LCA - Connection with EU regulation. The Action actively promotes Short-Term Scientific Missions. So far 22 missions have been completed.
Das Projekt "Transport and fate of contaminants (WP EXPO 2)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. Transport processes: The behaviour of contaminants in the water and sediments in river basins cannot be studied without taking into account the relevant processes in the basins and the boundaries with the upstream river system and the coastal region. The rivers that flow into these coastal areas take a considerable amount of contaminated sediments which are stored for longer or shorter periods in these estuaries. Retention of sediments will take place in the low-energy areas such as the smaller tributaries in the river basin. Within this work package various empirical formulations and characteristics will be defined that typically determine the sediment retention (e.g. hydraulic load and specific runoff). The estuarine regions of a river basin represent a diverse and complex water system. The tidal motion and the density currents induced by the change from fresh to saltwater are of particular importance in describing the water quality of estuaries. In the estuary strong intrusion of saltwater landward and current reversal might occur. The coastal area is characterised by the typical oscillations of the tidal movement and has a complicated current structure resulting from the horizontal intrusion of saline water and vertical stratification due to density differences. It is obvious that the estimation of the time and spatial behaviour of the exposure of contaminants in estuaries is complicated by the effects of tidal motion and chemical behaviour. In order to have an accurate description of the fate and distribution of contaminants in estuarine regions, a carefully analysis of model concepts and implementation is needed in this work package to assess the degree of complexity and valid merging of process formulations. Bio-chemical fate processes: Besides transport processes compounds are subject to many distribution and transformation processes or reactions which determine the exposure of contaminants within a river basin. Physico-chemical processes such as sorption, partitioning and evaporation determine the distribution between the water, air and particulate phases. Most compounds are subjected to transformation or degradation reactions, such as hydrolysis, photo-degradation, redox reactions and degradation by micro-organisms. The significance of degradation processes may vary with depth. For several compounds degradation is most prominent in the upper water layers, due to photo-degradation. Biodegradation rates in the lower water column are assumed to be lower. In anoxic sediments, biodegradation rates usually are much slower than in the water column. Many trace metals and persistent organic compounds are strongly bound to particulate phases or dissolved organic material or in the case of trace metals bound to inorganic and organic ligands. Usually only a limited fraction of a specific compound is present in a truly free dissolved state and available for uptake by aquatic organisms. usw.
Das Projekt "Teilvorhaben 4: ITC/KIT" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie durchgeführt. Das Ziel des Verbundvorhabens KUBA ist die Entwicklung eines Konzeptes für die nachhaltige Kreislaufführung von Kunststoffabfällen aus dem Baubereich mit besonderem Fokus auf der Kreislaufführung mittels chemischem Recycling. Dazu sollen in KUBA grundlegende Daten zu Kunststoffen im Baubestand, Stoffströmen aus der Bauwirtschaft sowie zu Prozessketten zur Erfassung und Sammlung, zur Rückführlogistik sowie der Sortierung gemischter Bauabfälle erhoben werden. Darüber hinaus werden die Aufbereitung sowie Konversionsverfahren für das chemische Recycling von Wärmedämmverbundsystemen untersucht. Alle erfassten Daten und Ergebnisse werden anschließend bezüglich grundsätzlicher Aspekte zur Nachhaltigkeit und der wirtschaftlichen Umsetzbarkeit bewertet. Von Bedeutung ist in KUBA darüber hinaus die Etablierung einer Zusammenarbeit und eines Austauschs zwischen den verschiedenen Akteuren der Wertschöpfungskette.
Origin | Count |
---|---|
Bund | 191 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 165 |
Messwerte | 1 |
Text | 10 |
unbekannt | 17 |
License | Count |
---|---|
closed | 5 |
open | 166 |
unknown | 21 |
Language | Count |
---|---|
Deutsch | 176 |
Englisch | 48 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 4 |
Datei | 4 |
Dokument | 5 |
Keine | 154 |
Webseite | 33 |
Topic | Count |
---|---|
Boden | 121 |
Lebewesen & Lebensräume | 107 |
Luft | 84 |
Mensch & Umwelt | 192 |
Wasser | 108 |
Weitere | 192 |