API src

Found 208 results.

Related terms

What matters 2015

Useful or harmful? A substance with many facets The element nitrogen is essential for all life on earth. In order to act as a building block of life however, it must form chemical compounds with other elements and thus be converted into its reactive state. Despite being the principle component of our atmosphere, molecular atmospheric nitrogen cannot be used directly by most living organisms. How the modern circular economy works The growing level of global consumption requires us to rethink how we deal with natural resources. A circular economy – one which fully integrates all aspects ranging from product design, sustainable production methods and patterns of consumption to recycling – makes significant contributions to resource conservation. The (energy) transition in the transport sector The transport sector, especially road transport, is responsible for around 18 percent of German greenhouse gases – and is, unfortunately, the only area that has not been able to reduce its emissions since 1990. To change this situation, a large part of the traffic must be avoided in the first place and low-emission modes must become more widely implemented. In addition, we need a significantly more climate-friendly energy supply for the traffic. Veröffentlicht in Broschüren.

UBA schlägt sektorübergreifende Obergrenze für Stickstoff vor

Neue Studie empfiehlt, den jährlichen Stickstoffausstoß Deutschlands auf 1 Million Tonnen zu begrenzen Das Umweltbundesamt (UBA) schlägt auf der am 31. Mai 2021 startenden Internationalen Stickstoff-Fachkonferenz INI2021 eine nationale Obergrenze für den Stickstoffausstoß vor. Ab dem Jahr 2030 sollten demnach insgesamt nicht mehr als 1 Million Tonnen Stickstoff pro Jahr in die Umwelt gelangen. Nur so könnten bereits bestehende Schutzziele für Gewässer, Landökosysteme und die menschliche Gesundheit erreicht werden. Aktuell liegt der jährliche Stickstoffausstoß bei 1,5 Millionen Tonnen im Jahr. Die neue Obergrenze erfasst nahezu alle Quellen und schließt neben der Landwirtschaft auch Sektoren wie den Verkehr oder die Industrie ein. UBA-Präsident Dirk Messner: „In den nächsten zehn Jahren müssten die jährlichen Stickstoff-Emissionen um rund 0,5 Millionen Tonnen auf maximal eine Million Tonnen sinken. Das ist schaffbar – wenn wir die bereits geltenden Regeln zur Luftreinhaltung, zum Klimaschutz und das Düngerecht endlich auch in der Praxis an allen Stellen einhalten. Aber auch dann ist nur eine erste Etappe erreicht, denn um einen flächendeckenden guten Umweltzustand in Deutschland zu erreichen, braucht es weitere Anstrengungen zur Stickstoffminderung: Schutzziele für Wasser, Boden, Luft, Ökosysteme und die menschliche Gesundheit müssen überprüft und die zulässige Obergrenze für den Gesamtstickstoffausstoß weiter abgesenkt werden.“ Prognosen des ⁠ UBA ⁠ zeigen, dass die stringente Umsetzung der bestehenden und teilweise gerade aktualisierten Gesetze, wie das nationale Luftreinhalteprogramm oder die neuen Anforderungen der Düngegesetzgebung, den Stickstoffausstoß im Hinblick auf die vorgeschlagene Obergrenze voraussichtlich ausreichend reduziert. Auch das Klimapaket der Bundesregierung wird zur Stickstoffminderung beitragen. Die Umsetzung der geltenden Gesetzgebung auch auf regionaler und lokaler Ebene muss jedoch regelmäßig überprüft werden, solange die Grenzwerte noch nicht überall erreicht werden. Die sektorübergreifende Obergrenze führt gegenwärtige Umweltziele für Luft, Grundwasser, Ökosysteme und Gesundheit und regionale Anforderungen deutschlandweit zusammen und zeigt, welchen Beitrag die einzelnen Sektoren in Bezug auf das Gesamtziel leisten. Die Obergrenze ist auf schnelle Umsetzbarkeit hin und als Etappenziel angelegt, daher fließen nicht für alle Bereiche der gute Umweltzustand, sondern auch derzeit politisch vereinbarte Zielstellungen in das Gesamtziel ein. Langfristig sind darüber hinaus gehend weitere Minderungen erforderlich, um einen guten Umweltzustand aller stickstoffbelasteten Bereich in Deutschland flächendeckend zu erreichen. Dennoch setzt das Instrument ein wichtiges Signal für Zusammenarbeit und gesamtgesellschaftliches Handeln über verschiedene Bereiche aus Politik und Gesellschaft hinweg. Deutschland verfehlt wegen zu hoher Stickstoffbelastungen seit Jahren seine Umweltqualitätsziele für Wälder, Oberflächen- und Küstengewässer, das Grundwasser und nicht zuletzt für die Luft, was auch zu Belastungen für die menschliche Gesundheit führen kann. Die meisten Stickstoffemissionen stammen aus Tierhaltung, Düngeranwendung und Verbrennungsprozessen im Verkehr. Aber auch Energienutzung, Haushalte und die Produktion von Konsumgütern tragen dazu bei. Stickstoff ist in verschiedenen chemischen Verbindungen unerlässlicher Baustein von jeglichem Leben. Er macht zum Beispiel als Luftstickstoff N2 78 Prozent unserer Atemluft aus. In dieser Form ist er unschädlich, aber für die meisten Lebewesen nicht nutzbar. In Verbindung mit anderen Elementen macht der Verwandlungskünstler Stickstoff Mensch und Umwelt zu schaffen, denn hier gilt: Die Dosis macht das Gift. Zu große Mengen Stickstoffdioxid (NO2), Ammoniak (NH3), Nitrat (NO3-) und Lachgas (N₂O) führen beispielsweise zu potenziell gesundheitsschädlicher Luft- und Grundwasserverschmutzung, überdüngten Meeren und einem Rückgang der Artenvielfalt. Mit dem Vorschlag für eine nationale Obergrenze tritt das Umweltbundesamt in seiner Gastgeberrolle auch bei der 8. Internationalen Stickstoff-Fachkonferenz an. Die Konferenz ist die weltgrößte ihrer Art und steht an der Schnittstelle zwischen Wissenschaft und Politik. Über 500 Teilnehmer aller Kontinente werden ab dem 31. Mai zur 4-tägigen Konferenz virtuell erwartet. Offene Infografik "Jährliche Stickstoffeinträge in die Umwelt" zum Download (ZIP) , unter Quellenangabe frei verwendbar. Erklärfilm "Stickstoff" zum Download (mp4) , unter Quellenangabe frei verwendbar.

Störfall im AKW Philippsburg

Lecks in etwa 20 Brennelementen führten zu erhöhter Radioaktivität (Jod - 131) im Kühlwasser. Da sich nicht vorgesehene chemische Verbindungen bildeten, die ins Abgas gelangten, funktionierten die Jodfilter nur unzulänglich. Es kam zu Abgaben von Jod - 131 über dem zulässigen Grenzwert. (Quelle: Greenpeace)

OH-Loch über dem Westpazifik entdeckt

Ein internationales Forscherteam um den Potsdamer Wissenschaftler Dr. Markus Rex hat ein bisher unbekanntes Atmosphären-Phänomen über der Südsee entdeckt. In einer Schicht, die durch ihre chemische Zusammensetzung den Transport der meisten natürlichen und menschgemachten Stoffe in die Stratosphäre verhindert, befindet sich über dem tropischen Westpazifik ein natürliches, unsichtbares Loch von mehreren tausend Kilometern Ausdehnung. Wie in einem riesigen Fahrstuhl gelangen in dieser Region viele chemische Verbindungen aus bodennahen Luftschichten ungefiltert durch die so genannte „Waschmittelschicht“ der Atmosphäre. Von Wissenschaftlern wird sie als „OH-Schicht“ bezeichnet. Das neu entdeckte Phänomen über der Südsee verstärkt den Ozonabbau in den Polarregionen und könnte – auch wegen der steigenden Luftverschmutzung in Südostasien - das künftige Klima der Erde erheblich beeinflussen.

Glyphosat-Analyse der Prüfbehörden bei Wissenschaftler in der Kritik

Der Streit um Bewertung der chemischen Verbindung Glyphosat setzt sich fort. Nachdem die Europäische Behörde für Lebensmittelsicherheit (EFSA) Mitte November 2015 den Stoff als "wahrscheinlich nicht krebserregend für Menschen" einstufte, wandten sich 96 internationale Wissenschaftler in einem offenen Brief vom 27. November 2015 an EU-Gesundheitskommissar Vytenis Andriukaitis und erhoben Vorwürfe gegen die EFSA und das Bundesinstitut für Risikobewertung (BfR). Die Analyse der BfR sowie die darauf aufbauende Bewertung der EFSA enthalten schwerwiegende Mängel, kritisieren die Forscher. Sie sei in Teilen „wissenschaftlich unakzeptabel“, und die Ergebnisse seien „durch die vorliegenden Daten nicht gedeckt“. In dem Schreiben fordern die Wissenschaftler demnach die EU-Kommission auf, bei ihren Entscheidungen „die fehlerhafte Bewertung der Efsa nicht zu beachten“. Koordinator des offenen Briefes der Wissenschaftler ist Krebsforscher Christopher Portier, Ex-Direktor des US National Toxicology Program. Er gehört zu den Forschern, die Glyphosat im Auftrag der Weltgesundheitsorganisation (WHO) und deren Krebsagentur IARC bewertet haben. Diese hatte den Wirkstoff im Frühjahr 2015 als "wahrscheinlich krebserregend für Menschen" eingestuft, was einen heftigen Streit ausgelöst hat.

Markt für Phenol

technologyComment of phenol production (RER): This dataset models the Hock process, which is the main process that is used for the production of phenol. In this process, cumene is transformed into phenol in two stages: (i) oxidation of the cumene, and (ii) cleavage into phenol and acetone. The oxidation happens in large reactors at a temperature of about 90-120°C and 0.5-0.7 MPa pressure. The whole reaction is autocatalytic and exothermic, releasing about 800 kJ per kilogram of cumene hydroperoxide to the environment by active cooling systems, mainly water. The second reaction – the cleavage – is an acid-catalyzed reaction, using almost exclusively sulphuric acid as catalyst. Two different ways are used within industry – called homogeneous phase (using 0.1-2% sulphuric acid) rsp. heterogeneous phase (40-45% sulphuric acid at a concentrate-acid ratio of 1:5). Also this second step is strongly exothermic – releasing ca. 1680 kJ per kilogram of cumene hydroperoxide cleaved. After the cleavage, further cleaning steps are used to achieve in the end a phenol purity of >99.9%. This includes neutralization and removing of sulphuric acid, followed by distillation processes. The overall yield of the production of phenol for this case here is assumed to be in the order of 95%. The inventory is based on stoechiometric calculations. The emissions to air (0.2 wt% of raw material input) and water were estimated using mass balance. Treatment of the wastewater in an internal wastewater treatment plant is assumed (elimination efficiency of 90% for C). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of phenol production, from cumene (RER): This process consists first in the production of cumene from the reaction of benzene and propylene. Cumene then reacts with oxygen to give phenol and acetone. For each kilogram of phenol produced, 0.63 kg of acetone are obtained. For the process 0.6 MJ/kg of electricity and 9.1 MJ/kg of steam are required per kg of phenol and 0.2 MJ/kg of electricity and 9.8 MJ/kg of steam required per kg of acetone (Saygin 2009). Chemical reaction: C9H12 + O2 -> C6H6O + C3H6O This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 SRI consulting. In: Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://e-archivo.uc3m.es/bitstream/handle/10016/14718/Life%20Cycle%20Assessment%20of%20platform%20chemicals%20from%20fossil%20and%20lignocelulose%20scenarios.%20Martin%20Gallardo.pdf?sequence=2, accessed 6 January 2017 Saygin, D. 2009. Chemical and Petrochemical Sector Potential of best practice technology and other measures for improving energy efficiency. IEA information paper. IEA/OECD. Retrieved from: https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf, accessed 6 January 2017 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)

Markt für Formaldehyd

technologyComment of dimethyl carbonate production (RER): Dimethyl carbonate has been historically produced through the reaction of phosgene and methanol. Because of the toxicity of phosgene, a greener route of production has been developed (Tundo and Selva 2002). Today it is mostly produced through the reaction of ethylene or propylene carbonate with methanol. This activity models the production of dimethyl carbonate as the result of the reaction of ethylene carbonate and methanol. Chemical reaction: C3H4O3 + CH3OH -> C3H6O3 + CH2O This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Tundo, P. and Selva, M. 2002. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. Vol.9, 35, pp. 706–716 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html) technologyComment of oxidation of methanol (RER): Represents a current cross-section of actual plants in Europe. The inventory is based on 100% formaldehyde production. The inputs and outputs are an average of the Silver and Formox processes. Silver process: Initially, methanol is dehydrogenated and subsequently there is combustion of hydrogen overall resulting in the production of formaldehyde and water. The raction takes place with air over a crystalline silver catalyst. Formox process: Methanol is directly oxidized by air over a metal oxide catalyst at a temperature of 470 °C. excess heat is removed with an oil-transfer medium. The product gases are cooled, absorbed in water, and an aqueous 37% formaldehyde solution is obtained. (Wells, 1999) References: G. Margaret Wells, “Handbook of Petrochemicals and Processes”, 2nd edition, Ashgate, 1999 Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. Final report ecoinvent data v2.0 No. 8. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.

Markt für Epoxidharz, flüssig

technologyComment of epoxy resin production, liquid (RER): Commercial epoxy resin can be produced by reacting bisphenol-A and epichlorohydrin in presence of a base catalyst (here represented by sodium hydroxide) (Guichon Valves n.d. and Pham and Marks 2005). Epoxy resins are in liquid form if n is from 0 to 1. When n is larger than 1 the resin in solid (Licare and Swanson, 2011). As the product here representes epoxy resin in liquid form, n is set to 1. 2C15H16O2 + 3C3H5ClO + 3NaOH -> C39H44O7 + 3Na+ + 3Cl- + 3H2O Pham, H.Q. and Marks, M.J. 2005. Epoxy Resins. In Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, Vol.13, pp.155-244. Wiley-VCH, Weinheim. Guichon Valves, n.d. Epoxy resins – Manufacturing process of Epoxy resins. Retrieved from: http://guichon-valves.com/faqs/epoxy-resins-manufacturing-process-of-epoxy-resins/, accessed 13th February 2017 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html) The process is carried out in a reactor where a solution of sodium hydroxide is added (20 to 40% concentration). The product is brought to boiling temperature and a solvent is added. Solvents are not included in the inventory as it is assumed that solvents are closed-loop recycled. The unreacted epichlorohydrin is collected and recycled back into the system. The epoxy resin in then washed; this gives the final product in liquid form. Epoxy resin can also be produced in solid form. To do so, curing with, for example secondary amines, is necessary. Epoxy resins can have different characteristics, these depend on additional products that can be added to the liquid resin. The required characteristics depend on the final use of the product (Guichon Valves n.d.) This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Licari, J.J. and Swanson, D.W. 2011. Chemistry, Formulation, and Properties of Adhesives. In Adhesives Technology for Electronic Applications (Second Edition), 2011

Markt für Ammoniak, wasserfrei, flüssig

technologyComment of ammonia production, steam reforming, liquid (RER w/o RU): This datasets corresponds to the technology used in European ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of ammonia production, steam reforming, liquid (RU): This datasets corresponds to the technology used in Russian ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of cocamide diethanolamine production (RER): Cocamide diethanolamine can be produced from different reaction of diethanolamine with methyl cocoate, coconut oil, whole coconut acids, stripped coconut fatty acids. Cocamide diethanolamine is modelled here as the 1:1 reaction of coconut oil and diethanolamine. The reaction occurs at a maximum temperature of 170 degrees Celcius with the aid of an alkaline catalyst. The catalyst in not consider significant in terms of emissions for the reaction and it is therefore not included in this dataset and it is assumed to be taken into consideration in the input of chemical factory. The production process can also be a 1:2 fatty acids reaction. This results in a lower quality product with output of free diethanolamine and ethylene glycol (Elbers 2013). Coconut oil composition varies, here it assumed an average composition CH3(CH2)12CONH2. This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Elbers, E. 2013. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS, Vol.101, pp.141-148 WHO Press, Geneva. For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)

Markt für Bariumcarbonat

technologyComment of barium carbonate production (GLO): Barium carbonate is manufactured in two reaction steps from barium sulfate (barite). Barite is treated with coal from coke to deliver barium sulfide. There are two main routes to receive barium carbonate: precipitation with carbon dioxide and precipitation with soda (Kresse et al., 2007). The main producers (e.g. Solvay) are using the carbon dioxide method, this is modelled here. In this reaction the barium sulfide is treated with carbon dioxide, which was formed in the first reactions step, which produces barium carbonate and hydrogen sulfide. Hydrogen sulfide is assumed to be neutralised in waste water treatment and turned into Sulfate The reaction temperature is between 60 and 70 degree C. It is followed by filtering of the resulting slurry, washing, drying, grinding and packaging of barium carbonate. The assumed process efficiency is 90% per reaction step. BaSO4 + 2 C --> BaS + 2 CO2 BaS + CO2 --> BaCO3 + H2S This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. References: Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2020) Umwelterklärung 2019, Werk Gendorf Industriepark, www.gendorf.de Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed., Volumes 1-26. New York, NY: John Wiley and Sons, 1978-1984., p. V3: 466 (1978) Kresse, R., Baudis, U., Jäger, P., Riechers, H. H., Wagner, H., Winkler, J. and Wolf, H. U. 2007. Barium and Barium Compounds. Ullmann's Encyclopedia of Industrial Chemistry. pp. 15-16. Wiley-VCH, Weinheim.

1 2 3 4 519 20 21