API src

Found 675 results.

Related terms

Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 2.4 Nässe-optimierte Profilentwicklung für Axialturbinenschaufeln

Das Projekt "Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 2.4 Nässe-optimierte Profilentwicklung für Axialturbinenschaufeln" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Helmut-Schmidt-Universität der Bundeswehr Hamburg, Professur für Energietechnik, Laboratorium für Strömungsmaschinen.

Untersuchungen zur Struktur der Gestehungskosten Waerme und Elektroenergie im liberalisierten Energiemarkt

Das Projekt "Untersuchungen zur Struktur der Gestehungskosten Waerme und Elektroenergie im liberalisierten Energiemarkt" wird/wurde gefördert durch: Stadtwerke Erfurt Strom und Fernwärme GmbH. Es wird/wurde ausgeführt durch: Fachhochschule Erfurt, Fachbereich Versorgungstechnik.Im Projekt werden die Gestehungskosten fuer die in einer GuD - Anlage parallel erzeugte Waerme und Elektroenergie unter den Randbedingungen sich liberalisierender Energiemaerkte fuer die Landeshauptstadt Erfurt grundsaetzlich analysiert und Vorschlaege fuer eine thermodynamisch korrekte und betriebswirtschaftlich sinnvolle Aufteilung der Kosten auf die beiden Koppelprodukte abgeleitet.

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Chemiewerk Bad Köstritz GmbH Bundesland: Thüringen Laufzeit: seit 2019 Status: Laufend

Sozialmedizinische Beurteilung des geplanten Kraftwerks St. Andrae III

Das Projekt "Sozialmedizinische Beurteilung des geplanten Kraftwerks St. Andrae III" wird/wurde gefördert durch: Österreichische Draukraftwerke. Es wird/wurde ausgeführt durch: Universität Innsbruck, Institut für Hygiene.Im Lavanttal, St. Andrae ist ein Dampfkraftwerk auf Kohlebasis geplant, das die bestehenden Anlagen DA1 und DA2 ersetzen soll. Die volksgesundheitlichen Auswirkungen, bedingt durch zu erwartende Immissionsbelastungen, sind zu beurteilen. Dazu wurde bzw. wird ein umfassendes Immissionsmessnetz mit dauerregistrierenden Messgeraeten installiert, entsprechende EDV-Auswertungssysteme erarbeitet. Abgrenzungen zu sonstigen Emittenten und dem 'sauren Regen' sind vorzunehmen, Immissionsprognosemodelle zu beruecksichtigen.

Dampfkraftwerk Dürnrohr: Reduzierung der Katalysatorinstandhaltungskosten

Das Projekt "Dampfkraftwerk Dürnrohr: Reduzierung der Katalysatorinstandhaltungskosten" wird/wurde ausgeführt durch: Verbund, Austrian Thermal Power GmbH & Co. KG.Ausgangssituation: Das Dampfkraftwerk Dürnrohr ist mit einer SCR (Selectiv Catalytic Reduction) Entstickungsanlage im Rauchgasstrom ausgestattet. Durch Alterung der Katalysatoren ist eine Erneuerung einer Katalysatorlage erforderlich. Zusammenfassung: Verfahren zur Reaktivierung (Waschen) der Katalysatoren sollen getestet und speziell für diese Anlage erprobt werden. Innovation: Durch die Vermeidung einer Nachladung können erhebliche Kosteneinsparungen erzielt werden. Bisher liegen bei keinem unserer Kraftwerke Erfahrungen mit der Reaktivierung des Katalysators vor. Nutzen: Der Verbund erwirbt Know-how auf dem Gebiet der Katalysatorreaktivierung, was auch für künftige Anwendungen eine bedeutende Verbesserung der Wirtschaftlichkeit darstellt.

Geothermie

„Geothermie“ oder „Erdwärme“ ist die unterhalb der Oberfläche der festen Erde gespeicherte Energie in Form von Wärme und zählt zu den regenerativen Energien. Diese beruht im Wesentlichen auf der von der Sonne eingestrahlten Wärmeenergie und dem nach oben gerichteten, terrestrischen Wärmestrom. Die von der Sonne eingestrahlte und von der Erdoberfläche an die Atmosphäre wieder abgegebene Wärmeenergie beeinflusst hierbei maßgeblich die Temperaturen im oberflächennahen Bereich bis etwa 15 bis 20 Metern Tiefe. Hier finden jahreszeitlich bedingte Temperaturschwankungen statt. In größerer Tiefe ist nur noch der terrestrische Wärmestrom maßgebend. Ursache ist die bei der Erdentstehung freigewordene Energie und der Zerfall radioaktiver Isotope. Mit der Tiefe nehmen die Temperaturen hier um durchschnittlich etwa 3 °C pro 100 Meter Tiefe zu. Man spricht auch von der „geothermischen Tiefenstufe“ oder dem „geothermischen Gradienten“. In einer Tiefe von etwa 20 m ist eine unbeeinflusste Temperatur von ca. 9 °C zu erwarten, in 100 m 12 °C und in 1.000 m etwa 40 °C. Der Transport der Wärme erfolgt durch Wärmeleitung von Teilchen zu Teilchen (Konduktion), aber auch durch bewegte Teilchen, also durch Grundwasserfluss (Konvektion). Berlin hat sich vorgenommen, bis spätestens im Jahr 2045 klimaneutral zu werden. Um dies zu erreichen, gilt es, gerade auch die Wärmeversorgung in der Stadt auf erneuerbare Energiequellen umzustellen. Denn fast die Hälfte des gesamten Berliner Endenergiebedarfs entfällt auf die Raumwärme und Warmwasserversorgung von Gebäuden. Bereitgestellt wird diese Wärme derzeit noch zu mehr als 90 Prozent über fossile Energieträger, also Kohle, Erdgas und Öl. Dies muss sich schnellstmöglich ändern. Dabei kann die Tiefe Geothermie – die emissionsfreie Förderung und Nutzung heißen Wassers aus tiefen Bodenschichten – eine wichtige Rolle spielen. Das genaue Potenzial im Berliner Untergrund ist noch unklar und muss erst präzise erkundet werden. Doch schon jetzt schätzen Geologen auf Grundlage bisheriger Erkenntnisse, dass bis zu einem Fünftel der benötigten Wärme mit Hilfe Tiefer Geothermie zur Verfügung gestellt werden könnte, etwa in Nah- und Fernwärmenetzen, über die Berliner Haushalte versorgt werden. Die Technik dazu ist bewährt und wird deutschlandweit in Dutzenden von Anlagen erfolgreich angewandt. Bild: SenMVKU Tiefe Geothermie. Erdwärme für Berlin Tiefe Geothermie, also Wärme, die in den Tiefen der Erde verfügbar ist, soll ein essenzieller Teil der Berliner Wärmeversorgung werden. Wir haben die wichtigsten Details für Sie zusammengestellt. Weitere Informationen Um das geothermische Potenzial von Berlin zu ermitteln, wurde in den Jahren 2009 bis 2012 die „Potenzialstudie zur Nutzung der geothermischen Ressourcen des Landes Berlin“ aufgeteilt in drei Module erarbeitet. Die Ergebnisse zu Modul 1, Grundlagenermittlung , und zu “Modul 2, Ermittlung des geothermischen Potenzials und dessen Darstellung, bildeten Grundlagen für die Darstellung der Potenzialkarten . Die Arbeiten zu Modul 3, Thermisch-hydraulische Modellierung, sind in der Zusammenfassung der Berichte (Modul 1 bis 3) enthalten, die nachfolgend als Download zur Verfügung steht. Im Jahr 2023 wurde eine aktualisierte Potenzialstudie zur Mitteltiefen Geothermie in Berlin erstellt, welche die Ergebnisse aus verschiedenen Forschungsprojekten der vorangegangenen 10 Jahren berücksichtigt. Aus dem Verbundprojekt „TUNB – Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken“ ist ein dreidimensionales Modell des Norddeutschen Beckens verfügbar, welches für den Raum Berlin mittels zusätzlicher Daten aus 2D/3D-Seismik und Bohrungen verfeinert wurde. Anschließend erfolgte eine geothermische Parametrisierung der potenziellen Nutzhorizonte, wobei vor allem auf die Ergebnisse der Verbundprojekte Sandsteinfazies, GeoPoNDD und MesoTherm zurückgegriffen wurde. Die aktualisierte Potenzialstudie und die Daten des 3D-Untergrundmodells stehen nachfolgend als Download zur Verfügung. Im Ballungsraum von Berlin ist die Temperatur des Untergrundes durch den Menschen tiefgreifend erwärmt. Der Anstieg der durchschnittlichen Oberflächentemperatur durch die globale Klimaerwärmung hat diesen Prozess zusätzlich noch verstärkt. Dies zeigen langjährige Temperaturmessungen in Grundwassermessstellen unter einer Tiefe von 20 m unter Gelände, unterhalb der jahreszeitliche Temperatureinflüsse durch die Sonne ausgeschlossen sind. In einigen Innenstadtgebieten sind Temperaturbeeinflussungen bis in über 80 m nachgewiesen. Die flächenhaft im Untergrund des Landes Berlin durchgeführten Temperaturmessungen zeigen deutlich, dass im zentralen Innenstadtbereich die Durchschnittstemperatur des Untergrundes und damit auch des Grundwassers z. T. um mehr als 4 °C gegenüber den dünner besiedelten Randbereichen anthropogen bedingt erhöht ist. Die Temperaturmessungen belegen auch, dass sich dieser Temperaturanstieg zunehmend auch flächenhaft in größeren Tiefen bemerkbar macht. Dies zeigt die Karte für den Bezugshorizont 0 m NHN (Normalhöhennull), das entspricht je nach Lage im Stadtgebiet einer Tiefen von 35 bis 55 m Tiefe. Näheres zu dieser Thematik kann dem Umweltatlas Berlin und der Veröffentlichung zur Veränderung des Temperaturfeldes von Berlin ( BRB Henning & Limberg ) entnommen werden. Grundsätzlich ist die Art und Weise der Nutzung geothermischer Energie von der Temperatur des Vorkommens abhängig. Die oberflächennahe Erdwärme (z.B. bis 100 m) lässt sich derzeit wegen ihrer geringen Temperatur von 8 bis 12 °C nur in Verbindung mit einer Wärmepumpe nutzen, die die erforderliche Wärme für die Raumheizung und die Wassererwärmung erzeugt. Da mit zunehmender Tiefe die Temperatur des Untergrundes ansteigt, kann ab einer bestimmten Tiefe (ab etwa 1.000 m) die Untergrundwärme auch direkt (ohne Wärmepumpe) genutzt werden. Ist eine Stromerzeugung mit Dampfturbinen beabsichtigt, sind in der Regel Temperaturen von über 100 °C notwendig. Die dafür geeigneten Nutzungshorizonte liegen in unserer Region i. d. R. drei bis fünf Kilometer unter der Erdoberfläche. In Berlin wird fast ausschließlich die oberflächennahe Geothermie genutzt, d. h. bis zu einer maximalen Tiefe von 100 m. Dafür steht ein ganzes Spektrum von technischen Möglichkeiten zur Verfügung. Alle diese Verfahren benötigen eine Wärmepumpe, die in der Lage ist, die relativ niedrige Temperatur des Untergrundes bzw. des Grundwassers in diesen Tiefen von 8 – 12 °C mit Hilfe von elektrischer Energie auf ein für Heizzwecke geeignetes höheres Temperaturniveau zu bringen. Weitere Informationen zur Erdwärmenutzung Zur Erhöhung der Planungssicherheit dieser Erdwärmesondenanlagen werden im Umweltatlas Berlin Potenzialkarten zur spezifischen Wärmeleitfähigkeit und speziell für Einfamilienhäuser zur spezifischen Entzugsleistung dargestellt. Hierin sind die dafür maßgeblichen geologischen und hydrogeologischen Verhältnisse subsummiert. Da der Einbau von Erdwärmesondenanlagen in den Untergrund potenziell mit einem Risiko der Grundwassergefährdung verknüpft ist, werden zum Schutz des Grundwassers bei der Errichtung einer solchen Anlage hohe wasserrechtliche Anforderungen an das Bohrverfahren, die anschließende Bohrlochabdichtung, Drucktests, Dokumentation etc. gestellt. Neuere Forschungsergebnisse, Schadensfälle sowie die stark gestiegene Anzahl der Erdwärmesondenanlagen bestätigen diese Gefährdung immer wieder. Weitere Informationen zur Anzeigepflicht für Bohrungen Da Berlin sein Trinkwasser zu 100 % aus dem Grundwasser und fast ausschließlich aus dem eigenen Stadtgebiet bezieht, werden deshalb bei der Errichtung einer Erdwärmesondenanlage in dem dafür erforderlichen wasserbehördlichen Erlaubnisverfahren zum Schutz des Grundwassers besonders hohe Anforderungen gestellt. Näheres kann dem Leitfaden Erdwärmenutzung in Berlin entnommen werden. Pflichtenheft zur Methodik und Dokumentation thermohydrodynamischer Modellierungen im Rahmen des wasserrechtlichen Erlaubnisverfahrens zum Betrieb von Erdwärmesondenanlagen mit einer Heizleistung von >30 kW Kartenwerke zur Grundwassertemperatur Kartenwerke zum Geothermischen Potenzial Geothermisches Potenzial – Karten aktualisiert im Geoportal verfügbar Auf der Basis von ca. 14.950 Bohrungen der Bohrungs­datenbank der AG Landesgeologie der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt wurden zwölf Karten neu berechnet. Die verfeinerten Planungshilfen für die Auslegung von Erdwärme­sonden­anlagen stehen für die Tiefenklassen 0-40 m, 0-60 m, 0-80 m und 0-100 m zur Verfügung. Weitere Informationen Karten im Umweltatlas Berlin

Indikator: Kraft-Wärme-Kopplung (KWK)

Die wichtigsten Fakten Die durch Kraft-Wärme-Kopplung (KWK) erzeugte Strommenge ist bis 2017 fast kontinuierlich gestiegen. Der Rückgang der KWK-Stromerzeugung zwischen 2017 und 2018 liegt an der Änderung der Energiestatistik: Seit 2018 werden KWK-Anlagen genauer erfasst. Im KWK-Gesetz ist festgeschrieben, dass im Jahr 2025 durch KWK 120 Terawattstunden (⁠ TWh ⁠) Strom erzeugt werden sollten. Das Ziel von 110 TWh für das Jahr 2020 wurde mit 112 TWh erreicht. Welche Bedeutung hat der Indikator? Bei der Stromerzeugung entsteht üblicherweise auch Wärme, die in konventionellen Kraftwerken in der Regel ungenutzt bleibt. Bei der Kraft-Wärme-Kopplung wird diese verwendet. KWK-Systeme haben somit einen deutlich höheren Brennstoffausnutzungsgrad im gekoppelten Betrieb. Sie nutzen einen deutlich größeren Teil der in den Brennstoffen enthaltenen Energie als herkömmliche Systeme. Im Vergleich zu einer Anlage auf dem neuesten Stand der Technik, die Strom und Wärme separat erzeugt, sind bis zu 20 % Einsparungen an ⁠ Primärenergie ⁠ möglich. Verringert sich der Energiebedarf, sinken auch die mit der Energiebereitstellung und -wandlung verbundenen Umweltbelastungen. Beispielsweise lässt sich der Ausstoß von Treibhausgasen verringern, wenn verstärkt auf KWK gesetzt wird. Auch der Bedarf an Energieträgern nimmt ab. Der Einsatz von KWK kann so zu einer ressourcensparenden Wirtschaftsweise beitragen. Wie ist die Entwicklung zu bewerten? Die Stromerzeugung aus Anlagen der Kraft-Wärme-Kopplung hat sich positiv entwickelt: Die erzeugte Elektrizität stieg von 78 ⁠ TWh ⁠ im Jahr 2003 auf 103 TWh im Jahr 2023. Dieser Zuwachs wurde vor allem durch den Ausbau der Nutzung von ⁠ Biomasse ⁠ zur Energieerzeugung sowie durch den Zubau der Erdgas-KWK getragen. Der Rückgang von 2017 auf 2018 ist im Wesentlichen auf eine verbesserte energiestatistische Erfassung der KWK-Anlagen ab 2018 zurückzuführen (für weitere Informationen siehe Gores, Klumpp 2018 ). Der moderate Rückgang seit 2018 bis 2020 um etwa 1,8 % auf 112 TWh spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Der Rückgang basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, die auf Basis von Stein- und Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um 9,8 % zurückgegangen. Mit der Novellierung des Kraft-Wärme-Kopplungsgesetzes KWKG) zum 01.01.2016 wurde als Ziel festgeschrieben, dass im Jahr 2020 Strom im Umfang von 110 TWh und im Jahr 2025 120 TWh aus KWK-Anlagen erzeugt werden soll. Mit den Regelungen des neuen Gesetzes sollen die Rahmenbedingungen für KWK verbessert werden. Insgesamt zeigt das Gesetz positive Wirkungen. Die KWK-Stromerzeugung im Jahr 2020 lag 7 TWh über dem Zielwert für dieses Jahr. Wie wird der Indikator berechnet? Der ⁠ Indikator ⁠ basiert auf Daten des Statistischen Bundesamtes für öffentliche und industrielle Kraftwerke ( Monatsbericht über die Elektrizitätsversorgung sowie Fachserie 4, Reihe 6.4 ). Durch diese Erhebungen werden jedoch nicht alle Anlagen erfasst. Deshalb wurden Modelle entwickelt, um auch die Stromerzeugung durch weitere Anlagen einbeziehen zu können: In Gores et al. 2014 sowie Baten et al. 2014 werden die Modelle und Berechnungsverfahren näher beschrieben. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel "Kraft-Wärme-Kopplung (KWK)" sowie im Themen-Artikel „ Kraft-Wärme-Kopplung (KWK) im Energiesystem “ .

Kraft-Wärme-Kopplung (KWK)

Kraft-Wärme-Kopplung ist die gleichzeitige Umwandlung von Energie in mechanische oder elektrische Energie und nutzbare Wärme innerhalb eines thermodynamischen Prozesses. Die parallel zur Stromerzeugung produzierte Wärme wird zur Beheizung und Warmwasserbereitung oder für Produktionsprozesse genutzt. Der Einsatz der KWK mindert den Energieeinsatz und daraus resultierende Kohlendioxid-Emissionen. KWK-Anlagen KWK-Anlagen unterscheiden sich in ihren Techniken, den eingesetzten Brennstoffen, hinsichtlich ihrer Leistung und bezüglich ihrer Versorgungsaufgaben. In den vergangenen Jahren wurde im Interesse der Energieeinsparung sowie des Umwelt- und Klimaschutzes durch verschiedene energiepoltische Instrumente (insbesondere KWKG und EEG) der Ausbau der KWK angereizt und unterstützt. Der wesentliche ⁠ Indikator ⁠ des KWK-Ausbaus ist die KWK-Nettostromerzeugung, dessen Entwicklung durch eine energiepolitische Zielstellung flankiert ist. Neben der KWK-Stromerzeugung ist auch die damit korrespondierende KWK-Nettowärmeerzeugung eine im Fokus stehende Größe. Auf die Veränderung dieser beiden wesentlichen KWK-Kenngrößen konzentrieren sich die nachfolgenden Darstellungen. KWK-Stromerzeugung Die KWK-Nettostromerzeugung – gezeigt werden hier die Daten unter Berücksichtigung des Eigenwärmebedarfs des Biogasanlagenfermenters – ist im Zeitraum von 2003 bis 2017 kontinuierlich gestiegen (siehe Abb. „KWK: Nettostromerzeugung nach Energieträgern“). Der Zuwachs ist insbesondere auf den verstärkten Einsatz von ⁠ Biomasse ⁠ sowie auf den Zubau und einer besseren Auslastung erdgasbasierter KWK-Anlagen zurückzuführen. Die auf Steinkohle- und Mineralölen basierende KWK-Stromerzeugung ist im Zeitverlauf dagegen zurückgegangen. Die Minderung im Jahr 2018 gegenüber 2017 ist im Wesentlichen die Folge einer verbesserten energiestatistischen Erfassung der KWK(-Anlagen) ab 2018. Der moderate Rückgang seit 2018 bis 2020 spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Dieser basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, welche mit Stein- oder Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um rund 10 Prozent zurückgegangen. 2021 ist die KWK-Stromerzeugung um rund 3 Prozent gegenüber 2020 gestiegen. KWK-Wärmeerzeugung Die Abbildung „KWK: Nettowärmeerzeugung nach Energieträgern“) zeigt von 2003 bis 2021 mit einem fast kontinuierlichen Anstieg ein ähnliches Bild wie im Strombereich (unter Berücksichtigung des Eigenwärmebedarfs der Biogasanlagen). Die im Vergleich zur KWK-Nettostromerzeugung prozentual geringere Erhöhung der KWK-Nettowärmeerzeugung im Zeitverlauf bis zum Jahr 2017 ist die Folge der Errichtung zahlreicher Gas-und-Dampf (GuD)-Anlagen, die eine überdurchschnittlich hohe ⁠ Stromkennzahl ⁠ aufweisen. Zwischen den Jahren 2017 und 2018 wurde die Erfassungsmethodik auf eine bessere Datengrundlage gestellt. Der Rückgang seit 2018 korrespondiert mit der jeweiligen Verringerung der KWK-Stromerzeugung (siehe Abschnitt „KWK-Stromerzeugung). 2021 stieg die KWK-Wärmeerzeugung um rund 4 Prozent. Infolge der Einsparanstrengungen von Erdgas infolge des russischen Angriffskriegs auf die Ukraine ist die KWK-Wärmeerzeugung 2022 um sieben Prozent und 2023 um fünf Prozent gegenüber dem jeweiligen Vorjahr gefallen. Ziel der Bundesregierung für die KWK-Stromerzeugung Bis zur Novellierung des Kraft-Wärme-Kopplungsgesetzes (KWKG) bezog sich das Ausbauziel der Politik auf die Gesamtnettostromerzeugung: Der KWK-Anteil an der gesamten Nettostromerzeugung sollte bis 2020 25 % betragen. Dieses wurde mit der Novellierung zum 1.1.2016 durch ein absolutes Mengenziel ersetzt. Die KWK-Nettostromerzeugung sollte demnach im Jahr 2020 mindestens 110 Terawattstunden und im Jahr 2025 mindestens 120 Terawattstunden betragen (§ 1 KWKG 2016) (siehe Abb. "KWK: Nettostromerzeugung nach Energieträgern" im ersten Abschnitt). Das Ziel für 2020 wurde nach vorläufigen Daten mit einer KWK-Nettostromerzeugung von 113 Terawattstunden erreicht.

Lausitz Energie Kraftwerke AG (LEAG) - Erste Teilgenehmigung zur Errichtung eines Gas- und Dampfturbinenkraftwerks am Standort 04575 Neukieritzsch, Am Kraftwerk 1

Die Firma Lausitz Energie Kraftwerke AG (LEAG) beantragte mit Datum vom 21. Dezember 2022 die Genehmigung nach §§ 4, 8 des Bundes-Immissionsschutzgesetzes die Erteilung der ersten Teilgenehmigung für die Errichtung und den Betrieb eines Gas- und Dampfturbinenkraftwerks am Standort 04575 Neukieritzsch, Am Kraftwerk 1 in der Gemarkung Lippendorf. Zur Realisierung des Vorhabens sind im Wesentlichen folgende Maßnahmen umzusetzen: die Errichtung und Betrieb einer Gasturbine mit einer Feuerungswärmeleistung (FWL) von ca. 1.417 MWth in Verbindung mit einem ungefeuerten Abhitzekessel sowie einer Dampfturbine (GuD), die Errichtung von 5 Ersatzstromaggregaten und die Errichtung erforderlicher Nebenanlagen. Die Anlage soll im zweiten Quartal 2027 in Betrieb genommen werden. Der Antragsgegenstand der ersten Teilgenehmigung ist auf die Errichtung des Pförtnergebäudes, von Baustraßen, des Gasturbinenfundamtens und des Bauleitergebäudes beschränkt.

TurboGruen - Turbomaschinen für Energiespeicher und grüne Brennstoffe, Teilvorhaben: 3.1b und 4.2c

Das Projekt "TurboGruen - Turbomaschinen für Energiespeicher und grüne Brennstoffe, Teilvorhaben: 3.1b und 4.2c" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Strömungsmechanik, Professur für Magnetofluiddynamik, Mess- und Automatisierungstechnik.

1 2 3 4 566 67 68