Die Heidelberg Materials AG betreibt auf ihrem Betriebsgelände Fl.-Nr. 7312, Gemarkung Lengfurt ein Zementwerk. Die Anlage zur Herstellung von Zementklinker oder Zementen mit einer Produktionskapazität von 500 Tonnen oder mehr je Tag ist nach Nr. 2.3.1 des Anhanges 1 der 4. BImSchV immissionsschutzrechtlich genehmigt. Die Cap2U GmbH (ein Gemeinschaftsunternehmen der Linde GmbH und der Heidelberg Materials AG) plant im Bereich des Bauhof-Gebäudes im Nordwesten des Werksgeländes des Zementwerks in Lengfurt die Errichtung und den Betrieb einer eigenständig betriebenen CO2-Produktionsanlage. Zweck dieser Neuanlage ist die Abscheidung von CO2 aus einem Teil-Abgasstrom (ca. 10 % des Ofenabgas-Volumenstroms bei Volllast) des Zementwerks sowie dessen Veredlung (Reinigung), Verflüssigung und anschließende kommerzielle Nutzung in der Industrie, insb. der Getränke- und Lebensmittelindustrie. Das CO2 aus den Lagertanks wird über Tankwagen an die Kunden verteilt. Ein weiteres Ziel des Vorhabens ist die großtechnische Demonstration der Abscheidung, Aufbereitung, Verbringung und Nutzung von CO2 mittels Aminwäsche aus dem Abgasstrom eines Zementklinkerofens zur Vorbereitung der zukünftigen Verbreitung dieser Technologie zu ökonomischen Konditionen in der Zementindustrie als Grundlage für den Aufbau einer klimafreundlichen Kohlenstoff-Kreislaufwirtschaft. Für die CO2-Produktionsanlage selbst hat die Cap2U GmbH als Errichter- und Betreiberin eine eigenständige Genehmigung nach Baurecht beantragt. Das mit Schreiben der Heidelberg Materials AG vom 13.12.2023 beantragte immissionsschutzrechtliche Genehmigungsvorhaben beschränkt sich auf die Änderungen am bestehenden, immissionsschutzrechtlich genehmigten Zementwerk zur Anpassung an den geplanten Betrieb der als Neuanlage zu errichtenden CO2-Produktionsanlage („Schnittstellen“). Im Wesentlichen umfasst der Antragsgegenstand das Ausschleusen von Ofenabgasen zur Anlage der Cap2U GmbH und die Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases in das Ofenabgassystem. Zur Dampferzeugung soll in der CO2-Produktionsanlage Wärme aus dem bestehenden Thermalölkreislauf, der bis zur CO2-Produktionsanlage erweitert werden soll, genutzt werden. Weiterhin ist es geplant, dass bestimmte in der CO2-Produktionsanlage anfallenden Prozesskondensate und Flüssigkeiten aus der Amin-Aufbereitungsanlage (flüssige Abfälle) übernommen und ggf. zwischengepuffert werden, bevor sie an Stelle von bisher eingesetztem Brauchwasser (Grundwasser bzw. Mainwasser) im Bereich des Bypasses in das Ofensystem eingedüst und verdampft werden. Der Abfallkatalog bei der Klinkerherstellung soll für den Einsatz der neuen flüssigen Abfälle entsprechend erweitert werden. Zudem soll der in der CO2-Produktionsanlage in einem Filter abgeschiedene Staub aus dem Ofenabgas vom Zementwerk übernommen und im Produktionsprozess eingesetzt werden. Weiterhin soll durch das Zementwerk die Brauchwasserversorgung der CO2-Produktionsanlage erfolgen. Im Durchschnitt werden hierfür durch das Zementwerk ca. 3 m³/h Wasser aus dem Main entnommen und in dem bestehenden Sandfilter vorgereinigt. Das Brauchwasser wird über eine neue, begleitbeheizte und isolierte Rohrleitung der CO2-Produktionsanlage zugeführt. Die Brauchwasserbelieferung selbst soll im Rahmen der für das Zementwerk der Heidelberg Materials AG erteilten wasserrechtlichen Entnahmeerlaubnis für Grund- und Mainwasser (Bescheid des LRA Main-Spessart vom 03.05.2016, Az. 41-641-K) erfolgen. Eine Erhöhung der genehmigten Entnahmemenge aufgrund der Belieferung der CO2-Produktionsanlage ist nicht erforderlich. Zusammenfassend erstreckt sich der immissionsschutzrechtliche Genehmigungsantrag auf: • Ausschleusen von bis zu 100 % der Ofenabgase (max. 296.000 m³/h i.N. fe im Jahresmittel) nach dem SCR-Reaktor (SCR - selektive katalytische Reduktion) zur geplanten CO2-Produktionsanlage der Cap2U GmbH (zum Zwecke der dort erfolgenden CO2-Abscheidung mittels Aminwäsche) und Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases (bis zu 290.000 m³/h i.N. fe im Jahresmittel) in das Ofenabgassystem unmittelbar hinter dem Ausschleusepunkt Anmerkung: Innerhalb der baurechtlich zu genehmigenden CO2-Produktionsanlage der Cap2U GmbH erfolgen dann zum einen die Entnahme von Abwärme zur Dampferzeugung aus dem Gesamt-Abgasstrom sowie anschließend die Ausschleusung eines Teilabgasstroms von bis zu 34.000 m³/h i.N. fe im Jahresmittel, die CO2-Abscheidung mittels Aminwäsche aus diesem Teilabgasstrom und die Rückführung des danach verbleibenden Rest-Teilabgasstroms mit bis zu 28.000 m³/h i.N. fe im Jahresmittel in den Gesamt-Abgasstrom. • Erweiterung des bestehenden Thermalölkreislaufes der SCR-Anlage (Thermoöl-Wärmeverschiebesystem) zur Dampferzeugung in der CO2-Produktionsanlage • Übernahme und Zwischenlagerung (max. 25 m³) sowie Dosierung (max. 2,7 m³/h) von Prozesskondensaten der CO2-Produktionsanlage (AVV-Nr. 16 10 02) über die vorhandenen 8 Düsen in den Bypass-Verdampfungskühler oder im Falle einer Betriebsstörung über die SNCR-Anlage in den Steigschacht des Wärmetauscherturms • Übernahme und Zwischenlagerung (max. 1,5 m³) sowie Dosierung (max. 0,7 m³/h) von Flüssigkeit aus der Amin-Aufbereitungsanlage der CO2-Produktionsanlage (AVV-Nr. 16 10 02) in die vorhandene Eindüsung in die Bypass-Mischkammer vor dem By-pass-Verdampfungskühler (Bypass-VDK) oder im Falle einer Betriebsstörung in die vorhandene Eindüsung im Steigschacht des Wärmetauscherturms • Übernahme und Dosierung von in der CO2-Produktionsanlage abgeschiedenem Filterstaub (überwiegend unreagiertes Kalkhydrat, max. 0,05 t/h, AVV-Nr. 10 13 04) aus dem Ofenabgas über das Kalkhydratsilo in die Ofenanlage Ergänzende materielle Anträge für das Vorhaben: • Antrag auf Festlegung eines Überwachungswerts von 40 mg/m³ im ersten Betriebsjahr nach Inbetriebnahme (Einfahrbetrieb) und eines Überwachungswerts von 20 mg/m³ nach Abschluss des Einfahrbetriebes für die Schadstoffe nach Nr. 5.2.5 Klasse I i.V.m. Anhang 3 TA Luft 2021 für den aus der CO2-Produktionsanlage kommenden Teil-Abgasstrom vor dessen Einleitung in den Haupt-Abgasstrom des Zementwerks. • Antrag auf Festlegung eines Emissionsgrenzwert für Formaldehyd in Höhe von 5 mg/m³ gemäß Nr. 5.2.7.1.1 Abs. 10 TA Luft 2021 für das Ofenabgas am Schornstein der Ofenanlage. • Antrag auf Festlegung eines Emissionsgrenzwerts für Acetaldehyd in Höhe von 10 mg/m³ im Ofenabgas am Schornstein der Ofenanlage gemäß LAI-Vollzugsempfehlung vom 21.06.2023 für Acetaldehyd.
Radioactive contaminated wastes from the Philippsburg nuclear power plant should be incinerated in the MVV incineration facility in Mannheim. This waste is mainly contaminated protective clothing. The OEko-Institute was commissioned to examine whether the clearance concept and the related dose criterion are in accordance with the state of science and technology. In addition, a manual is to be drawn up which specifies the requirements for control in the nuclear power plant and requirements for the incineration of these wastes.
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Acrylnitril (ACN) und Acrylamid (AA) werden in diesem Vorhaben gemeinsam behandelt, wegen ihrer Strukturähnlichkeiten, ihrer zum Teil ähnlichen, zum Teil unterschiedlichen gesundheitlichen Wirkungen und weil die zu bestimmenden Parameter der Belastung und der biochemischen Effekte mit den zu entwickelnden Methoden gemeinsam in jeweils einem Analysenlauf bestimmt werden können. Im Mittelpunkt der Untersuchungen sollen die krebserzeugenden Wirkungen beider Substanzen stehen. Die krebserzeugende Wirkung von AA und ACN wird in erster Linie von ihren oxidativen Stoffwechselprodukten getragen. Bisher wurden bei Menschen aber fast ausschließlich Produkte des reduktiven Stoffwechsels untersucht. Dies betrifft die Merkaptursäuren im Urin sowie die Haemoglobinaddukte im Blut. Die Quantität und damit das genotoxische Potential der im menschlichen Körper entstehenden ultimalen Kanzerogene ist unbekannt. Dies ist umso kritischer, als im Tierversuch große Interspezies-Unterschiede bezüglich des Verhältnisses vom oxidativen zum reduktiven Stoffwechsel gefunden wurden. Diese Erkenntnisdefizite führen dazu, dass für die arbeits- und umweltmedizinische Überwachung Parameter eingesetzt werden, die keinen Rückschluss auf das Krebsrisiko zulassen. Es ist deshalb das Ziel dieses Vorhabens, neben den auf reduktivem Wege entstandenen Merkaptursäuren und Hb-Addukten des AA und ACN auch die entsprechenden auf oxidativem Wege entstandenen Merkaptursäuren und Hb-Addukte zu bestimmen. Die Ergebnisse werden außerdem Rückschlüsse auf das kanzerogene Potential zulassen, das ACN und AA für den Menschen darstellen.
Die Konzentrationen vieler Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten in den letzten Jahren beträchtlich angestiegen. Als vegetationsgefährdende Komponente gewinnt dabei Ozon in der Bundesrepublik Deutschland zunehmend an Bedeutung, während z.B. Schwefeldioxid aufgrund der erfolgreichen Emissionsminderungsmaßnahmen in den Hintergrund tritt. Bei der Erstellung von Luftreinhalteplänen/Wirkungskatastern geht es darum, die räumliche und zeitliche Variabilität der Schadgaskonzentrationen im Hinblick auf eine mögliche Beeinträchtigung der Vegetation zu bewerten. Darüber hinaus gilt es, mögliche Entwicklungen der Immissionsbelastung prospektiv zu beurteilen, um frühzeitig evtl. notwendige Gegenmaßnahmen einleiten zu können. Dies bedarf integrierender Konzepte, in denen physikalisch/chemische Messprogramme und Verfahren der Bioindikation miteinander verknüpft werden. Das gemeinsam mit dem Hessischen Landesamt für Umwelt und Geologie durchgeführte Untersuchungsprogramm gliedert sich in fünf Schritte: - In einem ersten Schritt wurden potentielle Ertragsverluste durch Ozon anhand von Dosis-Wirkung-Funktionen aus der Literatur unter Verwendung hessischer Ozon-Messdaten für verschiedene Kulturpflanzen abgeschätzt. - In einem zweiten Schritt wurde eine flussorientierte Kenngröße für die Ozon-Belastung der Vegetation unter Verwendung von Messgrößen abgeleitet, die in den Ländermessnetzen erhoben werden. - In einem dritten Schritt wurde ein Modell für die Bestimmung des Gasaustausches zwischen Vegetation und bodennaher Atmosphäre entwickelt. - In einem vierten Schritt wurden sog. kritische absorbierte Ozon-Dosen (critical loads) für standardisiert exponierte Rezeptoren abgeleitet. - In einem fünften Schritt werden die aktuell in Europa diskutierten Grenzwerte zum Schutz der Vegetation vor Ozon und die ihnen zu Grunde liegenden Dosis-Wirkung-Funktionen auf ihre Übertragbarkeit auf bzw. Relevanz für die deutschen Verhältnisse untersucht. Die Methodik zur Ableitung kritischer absorbierter Ozon-Dosen (critical loads) wird weiterentwickelt sowie die Gefährdung der Vegetation durch Ozon auf regionaler Ebene realistisch abgeschätzt.
Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.
Es ist eine Kombination von Wachstums- und Bilanzversuchen mit dem Ziel der Optimierung der Versorgung wachsender Broiler mit Phosphor (P) vorgesehen. Das Projekt gliedert sich in zwei Blöcke: 1. In Dosis-Wirkungs-Studien sollen quantitativ die Beziehung zwischen der Höhe der P-Versorgung und der Wachstumsleistung, dem Futterverzehr, dem Ansatz von Protein, Energie- und Mineralstoffen beschrieben werden. Es wird untersucht, ob die Höhe der Lebendmasse oder das Geschlecht einen Einfluss auf diese Dosis-Wirkungs-Beziehungen ausüben. Die Steigerung der P-Versorgung wird in diesen Versuchen mit einer hoch verwertbaren mineralischen P-Quelle vorgenommen. 2. In einer Reihe von Bilanzversuchen soll eine Methode erarbeitet werden, die zur routinemäßigen Bestimmung der Verwertbarkeit unterschiedlicher P-Quellen und zur Bestimmung der Effizienz von Phytasen herangezogen werden kann. Es wird geprüft, (a) in welchem Bereich der P-Aufnahme eine solche Bewertung sinnvoll ist, (b) welchen Einfluss die Höhe der Versorgung mit Calcium bzw. das Ca: P-Verhältnis auf die P-Verwertung ausübt, (c) ob die Ermittlung der Gesamtausscheidungen ein hinreichend genaues Kriterium ist oder ob die praecaecale Verdaulichkeit für P bestimmt werden sollte und (d) ob das Alter bzw. die Höhe der Lebendmasse der Tiere einen Einfluss auf die P-Verwertung ausübt. Das Projekt strebt die Optimierung der P-Versorgung in der Broilermast an mit den Zielen, den Einsatz mineralischer P-Quellen zu minimieren, betriebliche Nährstoffkreisläufe zu entlasten, P-Ressourcen zur schonen und Futterkosten einzusparen.
Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.
Ziel des vorliegenden Projektes ist es, die Synthese der trennaktiven Membranen sowie das dazugehörige Membrantrennverfahren im Maßstab bis zur technischen Tauglichkeit zu skalieren, sowie neue, noch trennaktivere anorganische Membranen zu entwickeln. Im Ergebnis des Projektes soll eine einfache und energiesparende Technologie zur Abtrennung von Wasserstoff aus dem Erdgasstrom nach dessen Speicherung und Transport in der vorhandenen Erdgasinfrastruktur vorhanden sein. Aufgabe des DBI ist die Testung der verschiedenen Membrantypen und Membrangeometrien hinsichtlich der Abtrennung von Wasserstoff aus Erdgas . Dies erfolgt im Labor und in einem Feldtest. Im Labor werden verschiedene Gasgemische hergestellt und die Membranen damit beaufschlagt. Durch gezielte Dosierung von Störkomponenten wird die Stabilität der Membranen (Kohlenstoffmembranen, Membranen mit Pd-Zugabe und Molsiebmembranen) untersucht, Selektivitäten und Permeabilitäten der Membranen ermittelt. Es findet mit einer Pilotanlage ein Feldtest bei der Gasnetz Hamburg statt.
a) Einheimische Futtermittel (z.B. Tapsextr.schrot, Leinextr.-Schrot) enthalten z.T. futtereigene Schadstoffe (u.a. Glucoside), die leistungsmindernd wirken koennen. Es werden die Einsatzgrenzen fuer diese Komponenten bestimmt und versucht, den negativen Effekt zu mindern. b) Broiler- und Legehennenversuche mit unterschiedlicher Dosierung dieser Futtermittel. c) Nach jedem Versuch aufgrund der Ergebnisse Aenderung der Versuchsanstellung.
Origin | Count |
---|---|
Bund | 826 |
Land | 26 |
Wissenschaft | 1 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 806 |
Text | 24 |
Umweltprüfung | 15 |
unbekannt | 7 |
License | Count |
---|---|
geschlossen | 44 |
offen | 808 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 761 |
Englisch | 150 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 23 |
Keine | 648 |
Webseite | 188 |
Topic | Count |
---|---|
Boden | 507 |
Lebewesen und Lebensräume | 645 |
Luft | 473 |
Mensch und Umwelt | 852 |
Wasser | 490 |
Weitere | 853 |