Das Projekt "WIR! - WIRreFa - V1.5 Multimaterialrecycling, TP4: Bewehrungsentwicklung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule für Technik, Wirtschaft und Kultur Leipzig, Institut für Betonbau.
Das Projekt "Entwicklung digitalisierter Recyclingprozesse für die ressourceneffiziente,anwendungsnahe Wiederverwertung hybrider Leichtbau-Strukturen, Teilvorhaben: Entwicklung Spritzgusswerkzeug für die Herstellung von Bauteilen aus recyceltem Material" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hansemold GmbH.
Das Projekt "Entwicklung digitalisierter Recyclingprozesse für die ressourceneffiziente,anwendungsnahe Wiederverwertung hybrider Leichtbau-Strukturen, Teilvorhaben: Methodiken für Lebenszyklus- und Nachhaltigkeitsanalysen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Athenga GmbH.
Das Projekt "Entwicklung digitalisierter Recyclingprozesse für die ressourceneffiziente,anwendungsnahe Wiederverwertung hybrider Leichtbau-Strukturen, Teilvorhaben: Sensorikentwicklung und Datenverarbeitung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MABRI.VISION GmbH.
Das Projekt "Gesamtkonzept und Instrumente für eine lebenszyklusübergreifende Circular Economy (zirkuläre Ökonomie) am Beispiel des Produktstroms Elektro- und Elektronikgeräte" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Umweltbundesamt.Herstellung und Gebrauch von Elektrogeräten (EEE) verursachen eine hohe Rohstoffnachfrage und Energieverbrauch mit negativen Auswirkungen auf Mensch und Umwelt. Die in Verkehr gebrachte Menge nimmt stetig zu; gleichzeitig die Nutzungsdauer einiger Gerätetypen ab; Recycling geht aufgrund der komplexen Materialzusammensetzung mit Verlusten und Downcycling einher. Auf EU-Ebene soll dem durch einen lebenszyklusübergreifenden Circular-Economy(CE)-Ansatz begegnet werden. Um eine konzeptionelle Grundlage für die Ausgestaltung der zirkulären Ökonomie bereitzustellen, hat das UBA 2020 neun 'Leitsätze einer Kreislaufwirtschaft' veröffentlicht. Diese sind strategisch ausgerichtet und müssen mit konkreten Maßnahmen und Instrumenten zu ihrer Realisierung unterlegt werden. Dies soll am Bsp. der EEE, die eine der prioritären Produktgruppen des CE Action Plan der EU sind, erfolgen. Ziel ist die Entwicklung eines Gesamtkonzepts zur Umsetzung einer zirkulären Ökonomie am Bsp. des Produktstroms EEE in konkreten Maßnahmen und Instrumenten über alle Lebenszyklusphasen. Das Vorhaben ist stark interdisziplinär ausgerichtet und wird insbesondere auch die Schnittstellen zwischen verschiedenen Maßnahmen, Instrumenten und Regelungen bearbeiten. Das Vorhaben ermittelt auf Basis der Verknüpfung von Produkt- und Materialstrombetrachtungen (inkl. globaler Umweltwirkungen), einer Defizitanalyse der Instrumente des Status-Quo sowie der Analyse und Weiterentwicklung von Maßnahmen und Instrumenten über den gesamten Lebenszyklus einen geeigneten Lösungsraum. Mittels Wechselwirkungsanalyse und systemdynamischer Modellierungen wird die Lenkungswirkung der Maßnahmen und Instrumente in ihrer Kombination bewertet und ein konsistenter Policy Mix für eine CE für Elektrogeräte abgeleitet. Insb. bzgl. Design, Konsum, Schadstoffaspekten und Entsorgung werden Genderaspekte betrachtet und berücksichtigt.
Die ESK-SiC GmbH aus Frechen ist Hersteller von Siliciumcarbid (SiC) mit einer Jahresproduktionskapazität von etwa 30.000 Tonnen. SiC ist besonders hart und hitzeresistent und wird deswegen z.B. in der Schleifmittel- und Feuerfestindustrie verwendet, kann aber auch in keramischen Spezialanwendungen und im Solar- und Elektronikbereich zum Einsatz kommen. Roh-Siliciumcarbid wird konventionell über den Acheson-Prozess hergestellt. Hierfür werden Quarzsand und Petrolkoks in stöchiometrischen Mengen vermischt und mittels eines elektrischen Stroms auf über 2000 Grad Celsius erhitzt. Das macht den Prozess energieintensiv, und es entstehen eine Reihe von Schadstoffen (v.a. Staub, CO und Schwefelverbindungen). Pro Tonne SiC summieren sich die CO 2 -Emissionen insgesamt auf rund 4,2 Tonnen CO 2 . Beim Acheson-Verfahren entsteht SiC in verschiedenen Qualitätsstufen. Nur rund 55 Prozent des Roh-SiC ist von hoher Qualität. Von besonderer Bedeutung für technische Anwendungen ist jedoch qualitativ hochwertiges SiC mit hohem SiC-Gehalt (>98 Gewichtsprozent). Diese Qualität wird durch verschiedene Veredlungsschritte aus Roh-SiC hergestellt. Bei der Veredelung fallen rund 10-15 Prozent Aufbereitungsnebenanfälle an, die eine minderwertige Qualität aufweisen und als Zuschlagsstoff in der Metallurgie verwendet werden. Hierbei handelt es sich um ein klassisches Downcycling. Die ESK-SiC GmbH setzt in diesem Vorhaben das innovative RECOSIC-Verfahren ein, mit dem SiC-Abfälle zu SiC mit hoher Produktqualitäten recycelt werden sollen. Dabei sollen praktisch keine Abfallstoffe anfallen. Die SiC-Abfälle verfügen meist über kleine Korngrößen und enthalten unterschiedliche Verunreinigungen. Für eine hohe Produktqualität, die sich für technologisch anspruchsvolle Anwendungen eignet, müssen die Verunreinigungen entfernt, und zudem muss eine Kornvergrößerung erreicht werden. Vor dem Recycling wird das Ausgangsmaterial chargenweise untersucht, um die wichtigsten chemischen Parameter wie Si- und C- Gehalt und Fremdmetalle zu bestimmen. Anschließend wird das Material gemahlen und homogenisiert. Beim RECOSIC-Verfahren ist es durch Zugabe stöchiometrischer Mengen der Reaktionsedukte (SiO 2 oder Koks) möglich, den gewünschten SiC-Gehalt im Produkt einzustellen. Anschließend erfolgt eine thermische Behandlung unter Schutzatmosphäre. Dabei kommt es zu einem Kristallwachstum und zu einer Vergrößerung der SiC-Partikel. Gleichzeitig segregieren sich Verunreinigungen an den Korngrenzen und Oberflächen und können in der Nachbehandlung mechanisch oder chemisch leicht entfernt werden. Über Druck, Temperatur und Atmosphäre können die gewünschten Zieleigenschaften eingestellt werden. Während mit dem Acheson Verfahren rund 4,2 Tonnen CO 2 pro Tonne SiC entstehen, entstehen mit dem neuen RECOSIC-Verfahren 0,75 Tonnen CO 2 , das entspricht einer Einsparung an CO 2 -Emissionen von 82 Prozent. Diese Bilanz verbessert sich erheblich, wenn man berücksichtigt, dass beim konventionellen Acheson Verfahren nur eine Ausbeute von etwa 55 Prozent an hochwertigen Siliciumcarbid erreicht wird. Für eine Tonne HQ-SiC müssen rund 1,8 Tonnen SiC über das Acheson-Verfahren hergestellt werden, währenddessen im RECOSIC Verfahren nahezu ausschließlich hochwertiges SiC entsteht. Im Acheson-Prozess werden pro Tonne SiC 1,5 Tonnen Quarzsand und 0,9 Tonnen Petrolkoks benötigt. Diese benötigten Rohstoffe entfallen beim RECOSIC-Verfahren fast vollständig. Weiterhin sind die Emissionen von Staub, Schwefelverbindungen und CO deutlich geringer. Das Verfahren hat Modellcharakter für andere Unternehmen der Branche. Grundsätzlich können Nebenanfälle aus der SiC-Veredelung und SiC-Abfälle aus allen Anlagen der Industrie als Ausgangsmaterial verwendet werden. In Deutschland gibt es mehrere SiC verarbeitende Betriebe, deren Abfälle verwertet werden können und die Kapazität für das Recycling aufbauen könnten. Weiterhin ist das Verfahren, mit technischen Anpassungen, auch auf andere Keramikprodukte ausweitbar, was das Verbreitungspotential erheblich vergrößert. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: ESK-SIC GmbH Bundesland: Nordrhein-Westfalen Laufzeit: seit 2024 Status: Laufend
Die OTTO DÖRNER Kies und Deponien GmbH & Co. KG betreibt an ihrem Standort Hittfeld ein Kieswerk sowie eine Deponie der Klasse I. Der Standort verfügt aktuell bereits über einen Recyclingplatz mit einer jährlichen Produktionsmenge von ca. 90.000 Tonnen Recyclingmaterial aus Bauschutt, Beton und Asphalt. Aktuell findet bei der Verwertung von mineralischen Bauabfällen fast ausschließlich ein Downcycling statt, da die Recyclingprodukte aus Beton und Bauschutt ihren Einsatz meist im Straßenbau finden. Obwohl die wesentlichen Abfallströme aus dem Rückbau von Gebäuden (Hochbau) stammen, gelangen lediglich 1 bis 2 Prozent der zurückgewonnenen Gesteinskörnungen wieder im Hochbau in Form von Recyclingbeton. Um die Quote von Recyclingprodukten insbesondere im Hochbau/Betonbau zu erhöhen, bedarf es zuverlässiger, technischer Lösungen zur Herstellung homogener und hochwertiger Rezyklate. Die wenigen bisher existierenden Anlagen, die die für Beton notwendigen Qualitäten erreichen, bestehen im Wesentlichen lediglich aus Brecher, Magnetabscheider, Wäscher und Klassierer. Sie sind im Aufgabematerial limitiert und verfügen über keine eigentliche Aufbereitung für Sand bzw. die Feinfraktion. Material, das vor diesem Hintergrund nicht aufbereitet werden kann, findet derzeit oft den Weg in Downcycling, Verfüllung und im schlimmsten Fall Deponierung. Die OTTO DÖRNER Kies und Deponien GmbH & Co. KG beabsichtigt die Errichtung einer neuartigen Bauschuttwaschanlage zur Rückgewinnung von Gesteinskörnungen für eine hochwertige Wiederverwendung zum Beispiel in der Betonproduktion. Dazu soll ein bundesweit noch nicht praktiziertes Konzept aus verschiedenen Sortier- und Waschschritten Anwendung finden. Als Besonderheit zielt die Anlage neben der Rückgewinnung des Grobkorns auch auf die Rückgewinnung der Sandbestandteile ab, die ca. 40 bis 50 Prozent der Massenanteile ausmachen. Die vorgeschlagene Anlagenkonfiguration soll also alle Abfallfraktionen von 0 bis 32 Millimeter so aufbereiten, dass der Abfallkreislauf geschlossen werden und die einzelnen Produkte in hoher Qualität in den Hochbau, vorzugsweise in die Betonindustrie, zurückfließen können. Außerdem besonders ist die tiefe Wasseraufbereitung mit chemisch- physikalischer Stufe für eine vollständige Prozesswasserregeneration. Nach einer Vorbehandlung aus Sieb und Brecher wird das gesamte Material unter Zugabe von Wasser und Energie (Wäscher, Attritionszellen) aufgeschlossen. Sand und andere Stoffe werden vom Grobkorn gelöst und getrennt. Das Grobkorn wird in mehreren Stufen nach Dichte und optischen Eigenschaften sortiert und anschließend klassiert und so über den Stand der Technik hinaus aufbereitet. Die Weiterbehandlung der Sandbestandteile geschieht mittels eines Attritionsverfahrens. In den Attritionszellen werden durch Rotationswerkzeuge starke Spannungen an den Materialoberflächen erzeugt, die eine Ablösung von Anhaftungen bewirkt. Im Anschluss durchläuft der nun mittels Wasser geführte Massenstrom mehrere Separationsstufen, in denen der Sand nach Dichte und Korngröße getrennt und anschließend entwässert wird. Für diese Aufgaben kommen Zyklone, ein Aufstromsortierer und Siebe zum Einsatz. Der gewaschene RC-Sand wird anschließend mit einem Freifallklassierer auf das richtige Kornband eingestellt. Das anfallende Prozesswasser wird einer Wasser-/Schlammbehandlung zugeführt und im Anschluss durch eine chemisch-physikalische Aufbereitung mit mehreren Stufen geführt und als Waschwasser wiedereingesetzt. Diese Prozesswasserregeneration erlaubt weitgehend eine Schadstoffausschleusung und damit die Schließung des Wasserkreislaufs. Bei einer Aufgabenleistung von 150.000 Tonnen Bauschutt jährlich werden ca. 120.000 Tonnen Gesteinskörnung in hoher Qualität zurückgewonnen, davon rund 60.000 Tonnen an Sand, die nicht in Tagebauen als Primärrohstoff abgebaut werden müssen. Dies vermeidet jährlich 1 bis 2 ha Flächenverbrauch. Dabei kann auf Ausgangsmaterial zurückgegriffen werden, das unter anderen Umständen auf Deponien abgelagert werden muss. Diese Menge an mineralischen Abfällen muss somit nicht deponiert werden. Diese Anlagenerweiterung von üblichen Bauschuttaufbereitungsanlagen nach Stand der Technik um eine Sandaufbereitung und ggf. Abwasserreinigung ist auf alle Bauschuttaufbereitungsanlagen in Deutschland übertragbar. Branche: Bergbau und Gewinnung von Steinen und Erden Umweltbereich: Ressourcen Fördernehmer: Otto Dörner Kies- und Deponien GmbH & Co. KG Bundesland: Niedersachsen Laufzeit: seit 2023 Status: Laufend
In der deutschen Metallindustrie besteht ein signifikantes Potenzial zur Verbesserung der Ressourceneffizienz durch den Einsatz neuartiger sensorgestützter Analyse- und Sortiertechnologien. Dadurch können große Mengen an Primärrohstoffen substituiert und dissipative Verluste von Legierungselementen vermieden werden. Hauptziel des Projektes war die Ermittlung von Potentialen zur Verminderung von Downcycling durch ein legierungsspezifisches Recycling von Stahl-, Aluminium-, Kupfer- und Zinklegierungen. So kann eine nachhaltige Circular Economy erreicht und zudem die Versorgungssicherheit mit Metallrohstoffen unterstützt werden. Veröffentlicht in Texte | 81/2022.
Durch neuartige Sortiertechnologien bei der Schrottaufbereitung könnten beispielsweise beim Aluminiumrecycling bis zu 290.000 Tonnen Primärmaterial und bis zu 90 Prozent CO₂ eingespart werden. Das zeigt eine neue Studie des Umweltbundesamts, die das Potenzial zur Optimierung des Recyclings und somit zur Substitution von Primärrohstoffen untersucht hat. Beim Recycling von Metallen kommt es durch die Vermischung von Schrottsorten unterschiedlicher Legierungen in der Schmelze zu Qualitätsverlusten. Dies äußert sich in der Kontamination von Legierungen mit Störstoffen oder in Verlusten von hochwertigen Legierungselementen durch eine zu starke „Verdünnung“ der Schmelze. Dieses Phänomen wird als "Downcycling" bezeichnet . Hochwertige Legierungen werden derzeit meist durch die Zugabe großer Mengen an ressourcen- und treibhausgasintensiverem Primärmaterial erzeugt. Allerdings besteht ein signifikantes Potenzial zur Optimierung des Recyclings und somit zur Substitution von Primärrohstoffen durch den Einsatz neuartiger Sensorsortiertechnologien bei der Schrottaufbereitung. Das vom Umweltbundesamt beauftragte Projekt „OptiMet – Ressourceneffizienzsteigerung in der Metallindustrie - Substitution von Primärrohstoffen durch optimiertes legierungsspezifisches Recycling“ zeigt: Beim Aluminiumrecycling könnte beispielsweise durch den Einsatz einer Kombination aus XRF mit LIBS im Vergleich zum Status Quo nur für Deutschland je nach Szenario im Jahr 2030, basierend auf den im Projekt gewählten Annahmen und Modellierungen, zwischen ca. 200.000 Tonnen und 290.000 Tonnen an Primärmaterial und somit zwischen 5,0 bis 7,2 Mio. Tonnen CO 2 eingespart werden. Dies entspricht einer Minderung von ca. 90 Prozent. Beim Stahlrecycling ergäben sich Minderungen von ca. 60 Prozent. Auf den Ergebnissen aufbauend wurden politische Handlungsempfehlungen zur besseren Erschließung bisher nicht genutzter, hochwertiger Metallpotenziale vorgeschlagen. Beispielsweise wurde empfohlen, zunächst die Datenbasis der sich im Umlauf befindlichen Schrottsorten bzw. Legierungen zu verbessern. Darüber hinaus wäre eine Standardisierung von Recyclingtechnologien sowie die gezielte Förderung neuartiger Analyse- und Sortiertechniken empfehlenswert. Im Rahmen des Vorhabens wurden zunächst die definitorischen Grundlagen zum Thema Downcycling von Legierungen geschaffen. Anschließend wurden Daten zum Status Quo des Aufkommens und der Verwertungswege von Legierungsgruppen auf deutscher, europäischer und globaler Ebene zum gegenwärtigen Stand und für das Jahr 2030 erhoben. Darauf aufbauend wurden die zu erwartenden dissipativen Verluste und mögliche ökologische und ökonomische Effekte, die durch das Vermeiden solcher Verluste entstehen, bestimmt. Zur Beurteilung der Eignung unterschiedlicher Sortierverfahren für handelsübliche Schrotte wurden die aktuell verfügbaren Methoden XRF, XRT, LIBS, NAA und LIF untersucht und hinsichtlich der Erkennung der Elementverteilung sowie -Konzentration der Störstoffe in verschiedensten Schrottfraktionen miteinander verglichen und entsprechend ihrer Trennschärfe bewertet. Aufbauend auf dem Vergleich der Sortiertechniken wurde eine ideale Prozesskette, die damit verbundenen Ressourcenschonungs- und Primärrohstoffeinsparpotentiale sowie die Treibhausgasemissionen ermittelt.
In der deutschen Metallindustrie besteht ein signifikantes Potenzial zur Verbesserung der Ressourceneffizienz durch den Einsatz neuartiger sensorgestützter Analyse- und Sortiertechnologien. Dadurch können große Mengen an Primärrohstoffen substituiert und dissipative Verluste von Legierungselementen vermieden werden. Hauptziel des Projektes war die Ermittlung von Potentialen zur Verminderung von Downcycling durch ein legierungsspezifisches Recycling von Stahl-, Aluminium-, Kupfer- und Zinklegierungen. So kann eine nachhaltige Circular Economy erreicht und zudem die Versorgungssicherheit mit Metallrohstoffen unterstützt werden.
Origin | Count |
---|---|
Bund | 40 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 26 |
Text | 11 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 18 |
offen | 22 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 39 |
Englisch | 3 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 4 |
Keine | 20 |
Webseite | 17 |
Topic | Count |
---|---|
Boden | 35 |
Lebewesen & Lebensräume | 25 |
Luft | 19 |
Mensch & Umwelt | 41 |
Wasser | 17 |
Weitere | 39 |