Erste Auswertungen der Messkampagnen von Bundes- und Landesbehörden bestätigen bisherige Modellrechnungen und verbessern das Verständnis von Hochwasserabläufen. Im Mai und Juni des Jahres 2013 traten in den deutschen Flussgebieten außerordentliche Hochwasser auf. Die Elbe wies in einigen Abschnitten neue Höchstwasserstände auf. Insbesondere aus der Saale strömten große Wassermassen in den Fluss ein, sodass das Hochwasser unterhalb der Saalemündung deutlich höher auflief als beim Sommerhochwasser 2002; bei Magdeburg-Buckau lag der Scheitel 75 cm über dem bisherigen Höchststand. Um die Elbe zu entlasten, aktivierte man den Elbe-Umflutkanal bei Magdeburg, sperrte Nebenflüsse ab und setzte die Havelniederung kontrolliert unter Wasser. Auch durch einige Deichbrüche wurden teilweise erhebliche Volumina aus der Elbe abgeführt. Das führte zu einem Absunk der Wasserspiegel im Bereich mehrerer Dezimeter. Trotzdem wurde in Magdeburg nach Angaben der Bundesanstalt für Gewässerkunde mit ca. 5.100 m3?s ein Hochwasser mit einem Wiederkehrintervall von 200 bis 500 Jahren erreicht. Mehrere Institutionen der Elbe-Anrainerländer und des Bundes führten Messungen während des Hochwassers durch. Die BAW benötigt insbesondere Messwerte von Oberflächen- und Grundwasser, um mit ihnen Modelle zu überprüfen. Hauptziel einer Messkampagne vom 7. bis 13. Juni 2013 war deshalb, zwischen Riesa bei Elbe (El)-km 106 und dem Wehr Geesthacht (El-km 586 ) nah am Hochwasserscheitel den Wasserspiegel etwa in der Flussachse zu messen. Begleitend wurden Durchflussmessungen durchgeführt, die dazu dienten, sowohl den Abfluss als auch Durchflussanteile und Fließgeschwindigkeiten zu ermitteln. Am 14. Juni 2013 wurden im Bereich der Deichrückverlegung Lenzen (bei El-km 480) zusätzlich Fließgeschwindigkeiten in den Deichschlitzen gemessen. Diese wurden durch punktuelle Grund- und Oberflächenwasser-Messungen ergänzt. Die Auswertung der Messungen wird noch geraume Zeit in Anspruch nehmen. Schon jetzt ist aber klar, dass die Ergebnisse von großem Nutzen sein werden, um die Prozesse in der Natur besser verstehen und beschreiben zu können. Auch tragen sie dazu bei, die Strömungsmodelle der (acronym = 'Bundesanstalt für Wasserbau') BAW zu validieren. Zwei erste Auswertungen machen dies deutlich.
Mit dem hier vorgestellten Projekt wollen wir zwei Fragen beantworten, die momentan im Zusammenhang mit zunehmendem Schmelzen des grönländischen Eisschildes heiß diskutiert werden: der Zeitpunkt ersten Auftretens von Veränderungen im subpolaren Nordatlantik und die Wahrscheinlichkeit von Extremereignissen im Ozean jeweils hervorgerufen durch einen verstärkten bis außergewöhnlich starken Schmelzwassereintrag. Beides werden wir mit Hilfe von Simulationen mit dem neuen, bereits getesteten globalen Klimamodell FOCI-VIKING10 quantifizieren. Dieses einzigartige Modell ist für die Aufgabe besonders geeignet, weil es durch eingebettetes 2-Wege Nesting eine höhere Ozeangitterauflösung von 1/10° im Nordatlantik (30°-85°N) ermöglicht. In einer Reihe von multidekadischen Simulationen mit globaler Erwärmung von 1958-2050 schreiben wir unterschiedliche Projektionen des zukünftigen Schmelzwasserabflusses von Grönland vor, indem wir die lokalen, beobachteten Abflussraten bis 2016 verwenden und für die Folgejahre die lokalen Trends extrapolieren. Ergänzt werden die Trends durch stochastische Variabilität und systematisch eingefügte Extremwerte. Darüber hinaus werden wir neue Wege für die Modellvalidierung gehen, indem gezielt Satelliten- und Argo-float-Daten des meeresoberflächennahen Salzgehaltes auf räumliche und zeitliche Variabilität analysiert und verglichen werden. Als Hauptergebnis des Projektes werden wir Angaben zu Ort, Zeit und Größe der Veränderungen bereitstellen, mit denen der Ozean auf einen realistisch ansteigenden Schmelzwasserabfluss von Grönland reagiert, sowie Einblick in einen möglichen Einfluss auf das europäische Wetter und Klima geben.
Nach Einführung der heute aktuellen DIN 19700 im Jahre 2004 sind für Stauanlagen wie beispielsweise Talsperren oder Hochwasserrückhaltebecken in regelmäßigen zeitlichen Abständen vertiefte Sicherheitsüberprüfungen durchzuführen. Eine wesentliche Grundlage hierfür ist die Bereitstellung der hydrologischen Grundlagen auf dem aktuellen Stand bzgl. der meteorologischen und hydrologischen Daten und auch der abflussspezifischen Eigenschaften der betroffenen Einzugsgebiete. Nach den Vorgaben der DIN 19700 sind hydrologische Sicherheitsnachweise zu führen mit sehr extremen Hochwasserereignissen, deren Jährlichkeiten T bis zu T = 10 000 a reichen. Da so extreme Ereignisse nicht direkt anhand von Abflussbeobachtungen abgeleitet werden können, sind für jede Stauanlage gesonderte gebietsspezifische Betrachtung und Bewertung von Extremsituationen erforderlich. Das IWG Hydrologie wird aufgrund seiner langjährigen Erfahrung seit Jahren angefragt, für zahlreiche Stauanlagen die erforderlichen hydrologischen Grund entweder durch Anwendung geeigneter Niederschlag-Abfluss-Modelle zu ermitteln oder die Studien Dritter zu beurteilen. Eigene Modellierungen wurden beispielsweise durchgeführt für die Talsperren des Ruhrverbands Essen External Link, die Talsperre Kleine Kinzig in Baden-Württemberg External Link sowie zahlreiche Hochwasserrückhaltebecken in den Einzugsgebieten von Sulm, Neuenstadter Brettach, Weissach oder Leimbach im Auftrag der jeweiligen Wasserverbände oder Kommunen.
Mehrere tausend Gletscherseen sind durch die beschleunigte Gletscherschmelze in den Hochgebirge der Erde entstanden, von denen einige rasch an Volumen zunehmen. Vereinzelt kommt es immer wieder zu unvorhergesehenen Dammbrüchen mit teils katastrophalen Folgen für die talabwärts siedelnde Bevölkerung. Die Abflussspitzen solcher Gletscherseeausbrüche oder GLOFs (glacier lake outburst floods) können meteorologische Fluten lokal um ein Vielfaches übersteigen, und eventuell durch anhaltendes Wachstum von Gletscherseen in Zukunft noch höher werden. Die Gefährdung, oder Eintretenswahrscheinlichkeit, eines GLOFs ist jedoch weitestgehend unbekannt, weil bisher möglicherweise nur die größeren, schadensreichen Fluten dokumentiert wurden. Dieser Forschungslücke wollen wir begegnen, indem wir die räumliche und zeitliche Verteilung von Gletscherseen und deren Ausbrüche systematisch untersuchen. Unser Ziel ist es, durch die Erstellung von Inventaren von Gletscherseen und GLOFs zu quantifizieren, wie sich die GLOF-Gefahr zwischen 1985 und 2020 verändert hat. Unsere Untersuchungsregion sind die Gebirge des Pacific Northwest (NW-Amerika). Die dortigen Gletscher hatten in den vergangenen beiden Jahrzehnten eine der höchsten Schmelzraten weltweit. Jedoch blieb das Wachstum und Ausbrüche der zumeist eis- und moränen-gedämmten Seen regional nahezu unerforscht. Wir werden automatisch Gletscherseen aus Landsat-Satellitenbildern in mehreren Zeitschritten ab Mitte der 1980er Jahre kartieren. Aus diesen Seeninventaren und klimatischen, glaziologischen und morphologischen Variablen werden wir Bayes‘sche Modelle lernen, um die Entstehung von Gletscherseen vorhersagen zu können. Plötzlich auftretende Sedimentverfrachtungen unterhalb von Seen können auf bisher unerkannte GLOFs hinweisen, welche wir aus Landsat-Bildern automatisch detektieren werden. Diese Ereignisse werden wir mit verfügbaren Abflusszeitreihen und Feldarbeit an zwei ausgewählten Gletscherseen validieren werden. Somit erhalten wir ein regional konsistentes Inventar von GLOFs, aus dem wir ableiten können, wie stark sich deren Raten und Magnituden in den letzten 35 Jahren verändert haben. Schließlich werden wir Zeitreihen aus gemessenen und simulierten GLOF-Abflüssen zusammenführen, sodass wir die Jährlichkeit eines GLOFs abschätzen können. Mit Hilfe eines nicht-stationären Extremwertmodells werden wir zeigen, wie sich die Gefährdung durch GLOFs in den letzten Jahrzehnten verändert hat und wie sie sich bei anhaltender Gletscherschmelze verändern könnte. Wir sind zuversichtlich, dass unsere computer-gestützte Arbeit die Veränderungen der GLOF-Gefährdung vom Einzugsgebiet bis zur lokalen Ebene zuverlässig aufzeigen wird. Wir werden unsere Modelle frei zugänglich machen, was für Entscheidungsträger und Regionalplaner angesichts einer wachsenden Bevölkerung und Ressourcengewinnung im Pacific Northwest von Bedeutung sein wird.
Das übergeordnete Ziel der Arbeit sind Untersuchungen zur Vorhersagbarkeit extremer Hochwässer in Abhängigkeit von Eigenschaften der Einzugsgebiete und des Klimas unter Berücksichtigung unterschiedlicher räumlicher und zeitlicher Maßstäbe. Vorhersage von Hochwasser ist hier definiert als Schätzung von Hochwasserwahrscheinlichkeitsverteilungen für unbeobachtete Orte und/ oder zukünftige Zeitperioden. Die Vorhersagbarkeit bezieht sich auf die Quantifizierung und Attributierung der Unsicherheit der Vorhersage. Mit 'Extrem' werden Hochwasser bezeichnet, die besonders groß (hinsichtlich des Scheitels) und anderer Charakteristiken (Volumen, Form, räumliche Ausdehnung, etc.) sind. Zuerst erfolgt eine Daten-basierte Analyse, die die Hochwasser zu ihren treibenden Kräften wie Wetter, Klima und Einzugsgebietseigenschaften in Beziehung setzt. Methodisch werden hier lokale und regionale Hochwasserstatistik angewandt und verglichen. Ziel dieses ersten Teils ist die Quantifizierung der Vorhersagbarkeit allein auf Basis der Daten. Im zweiten Schritt wird ein multivariater Wettergenerator entwickelt, der an großskaligen meteorologischen Variablen bedingt werden kann. Damit steht ein Werkzeug zur Verfügung, mit dem Niederschlag und andere meteorologische Oberflächenvariablen für unbeobachtete Gebiete und Zeitperioden generiert werden können. Im dritten Schritt werden mit dem Wettergenerator zunächst eine Vielzahl hochwasserrelevanter Niederschlags- und Klimaszenarien erzeugt. Diese werden dann im Rahmen von Monte-Carlo-Simulationen zusammen mit einem hydrologischen Modell für lokale und regionale abgeleitete Hochwasserstatistik eingesetzt. Ziel ist die Quantifizierung der Vorhersagbarkeit der Hochwasser durch hydrologische Modellierung. Dabei wird eine Fehlerzuweisung in Abhängigkeit von Niederschlag, Klima und Einzugsgebietseigenschaften durchgeführt.
Im Zuge des vorliegenden Teilprojekts werden die aus der globalen Erwärmung erwarteten Veränderungen der Ereigniswahrscheinlichkeiten von Extremwetterereignissen sowie diverser Klimaparameter (darunter temperatur- und niederschlagsbasierte, aber auch weitere Parameter) für Deutschland bis zum Jahr 2100 analysiert und in Klimarisikokarten ausgewiesen. Im Anschluss an eine Regionalisierung werden mithilfe einer Clusteranalyse repräsentative Verteilnetzgebiete für die anschließenden Untersuchungen ausgewählt. Hierfür werden in einem ersten Schritt geeignete Methoden entwickelt, die eine Untersuchung der Auswirkungen des Klimawandels auf die Planung und den Betrieb von Verteilnetzen ermöglichen. Die entwickelten Methoden sollen es darüber hinaus ermöglichen, den Nutzen ebenfalls entwickelter Handlungsoptionen zu analysieren, die als potentielle Gegenmaßnahmen zu den durch die Folgen des Klimawandels steigenden Anforderungen an die Verteilnetzbewirtschaftung zum Einsatz kommen können. Im weiteren Verlauf werden die Auswirkungen des Klimawandels auf die ausgewählten Verteilnetzgebiete mithilfe der erarbeiteten Methoden sowohl aus technischer als auch aus wirtschaftlicher Sicht bewertet. Dies stellt die Grundlage für eine umfassende Risikoanalyse der untersuchten Gebiete dar. Ziel der Risikoanalyse ist die Weiterentwicklung der erstellten Klimarisikokarten hin zu Netzrisikokarten, die risikobehaftete Versorgungsstrukturen und Komponenten in den betrachteten Verteilnetzgebieten kennzeichnen. Somit können durch Unwetter verursachte lokale Gefahren für Betriebsmittel wie Kabel, Transformatoren oder Hausanschlüsse ausgemacht werden. Ziel der Untersuchungen ist es, die Auswirkungen des Klimawandels auf die Netzbewirtschaftung zu benennen, die technisch-wirtschaftlich optimalen Gegenmaßnahmen zu identifizieren, Hürden bei der Umsetzung herauszustellen sowie in den Netzrisikokarten zu markieren, in welchen Risikogebieten die Umsetzung welcher Handlungsoptionen sinnvoll ist.