API src

Found 255 results.

Related terms

Straßenverkehr - Emissionen und Immissionen 2016

Szenarienrechnung zur Wirkung ausgewählter Maßnahmen Die Modellierung der emissions- und immissionsseitigen Wirkung von Maßnahmen wurde aufbauend auf der Trendprognose ohne Maßnahmeneinfluss für das Jahr 2020 durchgeführt. Die Auswahl der Maßnahmen im Straßenverkehr konzentriert sich auf die Reduzierung der NO 2 -Belastung an Straßen. Untersucht wurden Maßnahmen, für die eine emissionsmindernde Wirkung stadtweit oder zumindest für einen großen Teil der Straßenabschnitte zu erwarten ist, an denen Grenzwertüberschreitungen auftreten. Außerdem mussten geeignete Modelle für die Berechnung der Wirkung verfügbar sein. Für einige Maßnahmen wurden mehrere Szenarien definiert, um abzuschätzen, welcher Maßnahmenumfang für die Einhaltung der Grenzwerte notwendig ist und wie unverhältnismäßige Belastungen vermieden werden können. Einige der Maßnahmen wurden daher unabhängig von der konkreten Umsetzbarkeit für die Modellierung sehr umfassend formuliert, z.B. zur Parkraumbewirtschaftung. Dies dient dazu, zunächst das mögliche Minderungspotenzial auszuloten. Die Aufnahme einer Maßnahme in die Szenarien oder der gewählte Durchführungsumfang ist noch keine Entscheidung, ob diese Maßnahme so in den Maßnahmenkatalog des Luftreinhalteplans aufgenommen wird. Hierfür müssen neben der Wirksamkeit weitere Aspekte wie die Verhältnismäßigkeit und Finanzierbarkeit sowie die technische, rechtliche und administrative Umsetzbarkeit gegeben sein. Szenario 7 „Fahrzeugtechnik“: – Nachrüstung von Dieselfahrzeugen Verbesserungen bei der Fahrzeugtechnik sind geeignet, um den Schadstoffausstoß in der gesamten Fahrzeugflotte zu vermindern. Diese Emissionsminderungen sind einerseits erreichbar mit einem Austausch von Fahrzeugen mit hohem Schadstoffausstoß durch emissionsarme Fahrzeuge wie Elektro- oder Elektro-Hybridfahrzeuge, Fahrzeuge mit Erdgasantrieb oder Dieselfahrzeuge mit niedrigen realen NO x -Emissionen. Weitere Emissionsminderungen können durch Nachrüstungen von Bestandsfahrzeugen mit zusätzlichen Abgasreinigungssystemen (Hardware-Nachrüstung) erreicht werden. Für das Szenario „Fahrzeugtechnik“ wurden die in Tabelle 2 zusammengefassten Annahmen zum Fahrzeugaustausch und zur Hardware-Nachrüstung getroffen. Da die Szenarien im Herbst 2018 berechnet wurden, konnten die Anforderungen an die Hardware-Nachrüstung von Pkw und leichten Nutzfahrzeugen des BMVI noch nicht berücksichtigt werden. Die vom BMVI am 28.12.2018 veröffentlichten „Technischen Anforderungen an Stickoxid (NO x )-Minderungssysteme mit erhöhter Minderungsleistung für die Nachrüstung an Pkw und Pkw-ähnlichen Fahrzeugen (NO x MS-Pkw)“ konnten dabei nicht berücksichtigt werden. In diesen Anforderungen wird kein Wirkungsgrad, sondern ein Emissionswert von 270 mg/km bezogen auf den Durchschnitt einer so genannten RDE-Messfahrt vorgeschrieben. Dabei werden Messungen der Abgasemissionen im realen Straßenverkehr vorgenommen (real driving emissions). Für das verwendete Emissionsmodell, das auf den Emissionsfaktoren des vom Umweltbundesamt empfohlenen Handbuchs für Emissionsfaktoren des Straßenverkehrs ( HBEFA ) basiert, ist eine derartige Angabe nicht direkt verwendbar, da im HBEFA Emissionsangaben nach Verkehrssituationen differenziert werden. Für die Hardware-Nachrüstung von Pkw und leichten Nutzfahrzeugen wurde ausgehend von den Erfahrungen mit der Entwicklung der Nachrüstung von Linienbussen in Berlin ein Wirkungsgrad von 70 % angenommen. Für schwere Nutzfahrzeuge über 7,5 t wurde entsprechend der Förderrichtlinie des BMVI für die Nachrüstung von schweren Kommunalfahrzeugen ein Wirkungsgrad von 85 % verwendet. Für Busse wurden keine Nachrüstungen oder Ersatzbeschaffungen für 2020 angenommen, da die Nachrüstung der BVG-Busse bereits in der Trendprognose 2020 berücksichtigt wurde. Aus den angenommenen Quoten der nachgerüsteten Fahrzeuge und dem Wirkungsgrad ergeben sich Korrekturfaktoren für die Emissionsfaktoren des HBEFA mit Werten zwischen 0,51 und 0,93. Das entspricht Emissionsminderungen für die einzelnen Fahrzeugschichten zwischen 7 % und 49 %. Durch den Austausch von Diesel-Pkw Euro 4 durch Euro 6d-TEMP ändern sich die entsprechenden Flottenanteile bei der Emissionsbestimmung. Emissionsberechnung Die Ermittlung der Emissionen erfolgte analog zur Berechnung für das Prognosejahr „Trend 2020“. Abweichend von der Trendprognose wurde jedoch das Software-Update nicht berücksichtigt, da derzeit nicht abschätzbar ist, wie Software-Updates und Hardware-Nachrüstungen kombiniert werden. Dies kann zur Überschätzung der Emissionen führen. Auf Basis der angepassten Flottenzusammensetzung und der Korrekturfaktoren durch die Nachrüstung für die Emissionsfaktoren wurden die abschnittsbezogenen Emissionen berechnet. In Tabelle 3 sind die Emissionsbilanzen für den Kfz-Verkehr mit der angepassten Flotte für Berlin für die Prognose 2020 und das technische Szenario sowohl für die Gesamtemissionen NO X und die NO 2 Direktemissionen als auch für Emissionen differenziert nach Fahrzeugart mit Angabe des relativen Unterschiede zwischen beiden Berechnungen dargestellt. Mit den Nachrüstungen und dem Ersatz älterer Fahrzeuge können unter den oben beschriebenen Annahmen die NO x -Emissionen des Kfz-Verkehrs in der Summe um 405 t/a oder 9,5 % reduziert werden, die Direktemissionen von NO[∫2~] sinken um 137 t/a, das entspricht einer Minderung von 13,5 %. Die höchsten NO x -Emissionsminderungen ergeben sich für die leichten Nutzfahrzeuge mit 22,6 %, während bei den Pkw die NO x -Emissionen nur um 7,6 % sinken. Wirkung auf die NO 2 -Belastung in Straßen Basis für die Berechnung der NO 2 -Gesamtbelastung der einzelnen Straßenabschnitte ist die Berechnung der Immissionsbelastung in Berlin für das Prognosejahr 2020. Für das Szenario „Fahrzeugtechnik“ wurde nur die Wirkung auf die lokale Verkehrsemission und damit die lokale Zusatzbelastung je Abschnitt ermittelt. Die zur Berechnung der Gesamtbelastung benötigte Vorbelastung wurde unverändert aus den Berechnungen für das Prognosejahr 2020 übernommen. Da sich die Emissionsminderung durch verbesserte Fahrzeugtechnik auch auf die NO 2 -Vorbelastung des städtischen Hintergrunds auswirkt, wird die NO 2 -Gesamtbelastung durch das verwendete Verfahren etwas überschätzt. Im Ergebnis sinkt im Szenario „Fahrzeugtechnik“ die NO 2 -Immission an den Hauptverkehrsstraßen mit kritischen NO 2 -Konzentrationen über 36 µg/m³ in der Trendprognose 2020 im Mittel um 1,9 µg/m³ mit einer maximalen Minderung von 3,9 µg/m³ in der Leipziger Straße und einer minimalen Minderung von 1,0 µg/m³ in der Turmstraße. Die Anzahl der Abschnitte mit einem NO 2 -Jahresmittelwert über 36,0 µg/m³ geht von 117 Abschnitten mit einer Gesamtlänge von 14,6 km in der Prognose 2020 auf 78 Abschnitte mit einer Länge von 10,1 km zurück. Die Zahl der Straßenabschnitte mit Überschreitungen des NO 2 -Jahresmittelwerts von 40 µg/m³ sinkt von 31 auf 17 Straßenabschnitte. Die Länge der betroffenen Abschnitte reduziert sich von 3,5 auf 1,7 km, an denen noch ca. 1.800 Menschen von NO 2 -Grenzwertüberschreitungen betroffen sind. Szenario 5 und 6: „Förderung des Umweltverbundes“ Mit einer Verlagerung von Pkw-Fahrten auf die Verkehrsmittel des Umweltverbundes (ÖPNV, Rad- und Fußverkehr) können Emissionen im Kfz-Verkehr vermieden werden. Ziel der Berliner Verkehrspolitik ist es, den Anteil des Umweltverbundes weiter zu steigern. Hierfür steht eine Vielzahl von Maßnahmen von der Verbesserung der Infrastruktur bis hin zu Kommunikationskampagnen zur Verfügung. Die Komplexität der Maßnahmen lässt sich in Modellen jedoch nur sehr eingeschränkt bewerten. Um ein Szenario „Umweltverbund“ berechnen zu können, wurden einige ausgewählte Maßnahmen zusammengestellt und Annahmen zu preislichen Anreizen und Auswirkungen auf Reisezeiten getroffen. Damit konnte mit dem Verkehrsmodell für Berlin die Verlagerung von Fahrten vom Pkw auf den Umweltverbund und die resultierenden Verkehrsstärken geschätzt werden. Diese bilden die Basis für die Berechnung der Emissionen und des lokalen NO 2 -Zusatzbeitrags an Hauptverkehrsstraßen. Für das Szenario „Umweltverbund“ wurden folgende Annahmen getroffen: Reduzierung des Preises für ein Jobticket im ÖPNV auf 50 Euro, Maßnahmen zur Förderung des Radverkehrs entsprechen einer Beschleunigung des Radverkehrs um 2 km/h, Ausweitung der Parkraumbewirtschaftung und Erhöhung der Gebühren. Das Szenario „Umweltverbund“ wurde in zwei Varianten berechnet, deren Unterschied die Parkraumbewirtschaftung betreffen. In Variante 1 wird eine Parkraumbewirtschaftung für 50 % der Fläche innerhalb des inneren S-Bahn-Ringes ohne Veränderung der Parkgebühren angenommen („PB 50“). Mit Variante 2 wird ein Maximalszenario modelliert, das eine vollständige Parkraumbewirtschaftung innerhalb des inneren S-Bahn-Ringes mit Parkgebühren von drei Euro statt bisher ein bis drei Euro („PB 100“) pro Stunde vorsieht. Die Annahmen zum ÖPNV und zum Radverkehr blieben jeweils unverändert. Emissionsberechnung Die Ermittlung der Emissionen erfolgte analog zur Berechnung für das Prognosejahr 2020 ohne Maßnahmen (jedoch mit Software-Update). Auf Basis der geänderten Verkehrszahlen wurden die abschnittsbezogenen Emissionen berechnet. Die Fahrleistungsdaten für die Verkehrsmengen im Hauptstraßennetz, wie sie in der Emissionsberechnung verwendet wurden, sind in Tabelle 4 den Fahrleistungen der Prognose 2020 mit Angabe der relativen Unterschiede gegenübergestellt. Da der Umweltverbund keinen Güterverkehr aufnehmen kann, ergeben sich für Nutzfahrzeuge keine Änderungen. Es zeigt sich, dass nur mit einer flächendeckenden Parkraumbewirtschaftung bei höheren Parkgebühren eine wirksame Reduzierung der Fahrleistung um knapp 10 % erreicht werden kann. Das Szenario PB 50 führt dagegen trotz Fördermaßnahmen für den Umweltverbund nur zu knapp 2 % geringeren Fahrleistungen. In Tabelle 5 sind die Emissionsbilanzen für die Szenarien zur Förderung des Umweltverbundes den Emissionen der Trend-Prognose 2020 gegenübergestellt. In der Summe über alle Hauptverkehrsstraßen können mit der Variante „PB 50“, d.h. mit der milden Form der Ausweitung der Parkraumbewirtschaftung die NO x -Emissionen um ca. 1 % oder 45 t/a gesenkt werden. Nur mit der Variante „PB 100“ ergeben sich deutlichere Emissionsminderungen von circa 6,5 % oder 279 t/a. Wirkung auf die NO 2 -Belastung in Straßen Auf der Basis der Emissionen des lokalen Kfz-Verkehrs wurde für jeden Straßenabschnitt die lokale Zusatzbelastung berechnet. Die zur Berechnung der Gesamtbelastung benötigte Vorbelastung wurde unverändert aus den Berechnungen für das Prognosejahr 2020 übernommen. Im Ergebnis sinkt die NO 2 -Belastung an den Hauptverkehrsstraßen mit kritischen NO 2 -Konzentrationen über 36 µg/m³ (bezogen auf die Trendprognose 2020) bei der Variante „PB 50“ im Mittel um lediglich 0,4 µg/m³ mit einer Spannweite von 0 bis 1,5 µg/m³. Die höchste Minderung wurde für die Reinhardstraße berechnet. Mit der Variante „PB 100“ sind deutlichere Verbesserungen der Luftqualität erreichbar. Die NO 2 -Jahresmittelwerte sinken um 0,5 bis 4,2 µg/m³ mit einer mittleren Minderung von 2,3 µg/m³. Die höchste Minderung ergab sich für die Lietzenburger Straße zwischen Pfalzburger Straße und Uhlandstraße. Im Vergleich zur Prognose 2020 sinkt die Zahl der Straßenabschnitte mit Überschreitungen des NO 2 -Jahresmittelwerts von 40 µg/m³ von 36 auf 34 Abschnitte für die Variante „PB 50“ und auf 32 Abschnitte für die Variante „PB 100“. Die Länge der betroffenen Abschnitte reduziert sich von 3,9 auf 3,8 bzw. 2,2 Kilometer. Die Anzahl der Abschnitte mit einem NO 2 -Jahresmittelwert über 36 µg/m³ geht in der Variante „PB 50“ von 124 Abschnitte mit einer Gesamtlänge von 15,3 km in der Prognose 2020 auf 114 Abschnitte mit einer Länge von 14,1 km bzw. bezogen auf die Variante „PB 100“ auf 73 Abschnitte mit einer Länge von 8,8 km zurück. Szenario 1 bis 4: „Durchfahrtsbeschränkungen für Dieselfahrzeuge“ Die oben dargestellten Wirkungsuntersuchungen für verschiedene Maßnahmen haben gezeigt, dass diese trotz teilweise ambitionierter Annahmen nicht ausreichen, um an allen Straßenabschnitten eine schnelle Einhaltung des NO 2 -Grenzwertes zu erreichen. Daher wurde für alle Straßenabschnitte, die in der Trendprognose 2020 noch NO 2 -Jahresmittelwerte über 40 µg/m³ prognostizierten, die Wirkung von Durchfahrtsbeschränkungen für Dieselfahrzeuge auf einzelnen Straßenabschnitten modelliert. Flächenhafte, über die Anforderungen der bestehenden Umweltzone hinausgehende Fahrverbote oder streckenbezogenen Fahrverbote für Fahrzeuge mit Otto-Motoren wurden nicht geprüft, da diese gemäß des Urteils des Berliner Verwaltungsgerichtes vom 9.10.2018 nicht erforderlich und nicht verhältnismäßig sind. Für die streckenbezogenen Diesel-Fahrverbote wurden folgende Szenarien mit unterschiedlicher Eingriffstiefe geprüft: Szenario 1: Durchfahrtverbot für Diesel-Pkw der Abgasstufen Euro 5 und älter. Dies betrifft 16,3 % der in Berlin 2020 voraussichtlich verkehrenden Pkw. Szenario 2: Durchfahrtverbot für alle Diesel-Fahrzeuge mit Ausnahme der Linienbusse und der Motorräder der Abgasstufen Euro 5 / V und älter. Dies betrifft bezogen auf die Flotte von 2020: 16,3 % der Pkw, 70,4 % der leichten Nutzfahrzeuge ( < = 3,5 t), 39,6 % der schweren Nutzfahrzeuge ( > 3,5 t) und 51,9 % der Reisebusse. Szenario 3: Durchfahrtverbot für Diesel-Pkw der Abgasstufen Euro 6c und älter. Dies betrifft 35,3 % der in Berlin 2020 voraussichtlich verkehrenden Pkw (Diesel-Pkw der Euro-Norm 6d-TEMP und 6d sind vom Durchfahrtverbot ausgenommen). Szenario 4: Durchfahrtverbot für schwere Nutzfahrzeuge ( > 3,5 t) der Abgasstufen Euro V und schlechter. Dies betrifft 39,6 % der in Berlin 2020 voraussichtlich verkehrenden schweren Nutzfahrzeuge. Die in Berlin 2020 voraussichtlich verkehrenden Fahrzeuge wurden anhand der 2014 ermittelten Fahrzeugflotte und anhand der bundesweiten Flottenentwicklung bis 2020 berechnet. Für alle Szenarien wurde eine Einhaltequote von 80 % angenommen, d.h. dass 20 % der vom Fahrverbot betroffenen Fahrzeuge weiterhin durch die Abschnitte mit Durchfahrtverbot fahren, insbesondere auf der Grundlage von Ausnahmereglungen, aber auch aufgrund der Nichtbeachtung des Fahrverbots. Diese Quote wurde aus Modellierungen anderer Luftreinhaltepläne (Stuttgart, Hamburg) übernommen. Die Straßenabschnitte, die laut Modellierung in 2020 noch NO 2 -Werte von über 40,0 µg/m³ aufweisen werden und für die die Wirkung von Durchfahrtverboten entsprechend der vier Szenarien untersucht wurde, sind in der folgenden Tabelle 6 aufgelistet. Verkehrliche Wirkung Die Wirkung der Durchfahrtverbote auf die Verkehrsströme wurde ausgehend von Verkehrsdaten der Trendprognose 2020 mit dem Berliner Verkehrsmodell bestimmt. Berechnet wurde die Verlagerung der vom Durchfahrtverbot betroffenen Fahrzeuge auf Ausweichrouten sowie die Verlagerung von nichtbetroffenen Fahrzeugen in die frei werdenden Kapazitäten der Abschnitte mit Durchfahrtverbot. Für die Fahrverbotsszenarien werden Verkehrsströme für das gesamte Netz differenziert für Pkw, leichte und schwere Nutzfahrzeuge angegeben. Dabei wird berücksichtigt, wo die Fahrzeuge noch fahren dürfen. So werden für jede Strecke zum einen die Belegungen mit den Fahrzeugen angegeben, die zur Gruppe der nicht vom Fahrverbot betroffenen emissionsärmeren Fahrzeuge gehören und zum anderen diejenigen, die zur Gruppe der vom Fahrverbot betroffenen höher emittierenden Fahrzeuge gehören. Neben den Veränderungen der Verkehrsströme auf Hauptverkehrsstraßen wurden auch Effekte auf Nebenstraßen berücksichtigt. In der Bilanz ergeben sich nicht nur Veränderungen der Verkehrsströme in der unmittelbaren Umgebung der Verbotsstrecke, sondern auch großräumig im Straßennetz durch weiträumige Umfahrungen. Bei allen Szenarien treten auch Zunahmen der Verkehrsbelastungen im Nebennetz auf, die den Bemühungen um Verkehrsberuhigung entgegenstehen. Für die Mehrzahl der Straßen liegen die Zu- oder Abnahmen der Verkehrsmengen zwischen 25 und 250 Fahrzeuge pro Tag. Es gibt aber auch einige Straßenzügen, bei denen die Veränderungen 500 Fahrzeuge pro Tag übersteigen. Bezogen auf die gesamte Verkehrsmenge pro Tag liegen die Zu- und Abnahmen abschnittsbezogen in der Regel deutlich unter 10 %. Emissionsberechnung Die Ermittlung der Emissionen erfolgte für die Gruppen der vom Fahrverbot betroffenen und nicht betroffenen Fahrzeuge getrennt mit den jeweiligen Vorgaben der Szenarien für die Flottenzusammensetzungen. Die für beide Gruppen getrennt ermittelten Emissionen wurden abschnittsweise zu einer Gesamtemission aufsummiert. Die abschnittsbezogenen Emissionen für den Prognosenullfall 2020 und die 4 Szenarien sind für die ausgewählten Abschnitte (vgl. Tabelle 6) in Tabelle 7 aufgeführt. Es ist überwiegend eine deutliche Reduzierung der NO x -Emissionen zu beobachten. Die mittleren Emissionsminderungen liegen je nach Szenario zwischen 4,9 und 34,5 %. In den ausgewählten Abschnitten mit NO 2 -Grenzwertüberschreitung, für die die Wirkung streckenbezogener Fahrverbote ermittelt wurde, sinken die NO x -Emissionen für das reine Diesel-Pkw-Durchfahrtverbot (Szenario 1) um 7 bis gut 31 %, d.h. im Mittel um 14 %. Wird das Fahrverbot auf Diesel-Pkw mit Euro 6 a-c (Szenario 3) ausgedehnt, für die keine Anforderungen an die Real-Emissionen gelten, steigt die Emissionsminderung im Mittel auf gut 18 % mit einer maximalen Emissionsminderung um 32 %. Da jedoch bei diesem Szenario mehr als doppelt so viele Fahrzeuge vom Fahrverbot betroffen sind, entstehen größere Kapazitätsspielräume, die durch zulässige Fahrzeuge, u.a. auch durch Nutzfahrzeuge, aufgefüllt werden. Dies führt in einigen Straßenabschnitten wie der Brückenstraße dazu, dass die Emissionsminderungen bei Szenario 3 kleiner sind als bei Szenario 1. Die größte Wirkung erzielt Szenario 2 mit einem Fahrverbot für alle Dieselfahrzeuge bis einschließlich Euro 5. Hier liegen die Emissionsminderungen zwischen 22 % und 46 % bei einer mittleren Minderung von 35 %. Im Szenario 4, in dem nur Lkw bis einschließlich Euro V unter das Fahrverbot fallen, sind die Abnahmen deutlich geringer und im Abschnitt Dorotheenstraße nehmen die NO x -Emissionen sogar leicht zu. Wirkung auf die NO 2 -Belastung in Straßen Basis für die Berechnung der Gesamtbelastung ist die Berechnung der Immissionsbelastung in bebauten Straßen des Hauptstraßennetzes in Berlin für das Trend-Prognosejahr 2020. Für alle vier Szenarien wurde die Wirkung auf die lokale Zusatzbelastung im Abschnitt ermittelt. Die zur Berechnung der Gesamtbelastung benötigte Vorbelastung wurde unverändert aus den Berechnungen für das Prognosejahr 2020 übernommen. Eine Zusammenfassung der Ergebnisse der vier berechneten Szenarien gibt die folgende Tabelle 8. Als wirksamstes Szenario erweist sich das Fahrverbot für alle Diesel-Fahrzeuge bis einschließlich Euro 5 / V (Szenario 2). Bis auf die Leipziger Straße wird an allen geprüften Streckenabschnitten der NO 2 -Grenzwerte von 40 µg/m³ eingehalten. An der Leipziger Straße zwischen Wilhelmstraße und Bundesratsgebäude kann der NO 2 -Werte von über 60 µg/m³ bei Anwendung des Fahrverbots für Diesel-Fahrzeuge bis einschließlich Euro 5 / V auf 45,5 µg/m³ im Jahresmittel gesenkt werden, zwischen Charlottenstraße und Friedrichstraße von 55,6 µg/m³ auf 41,7 µg/m³. Gleichzeitig steigt jedoch an der Invalidenstraße aufgrund des Ausweichverkehrs der prognostizierte NO 2 Jahresmittelwert von 39,4 µg/m³ auf 41,6 µg/m³ und an Turmstraße von 39,3 µg/m³ auf 41,2 µg/m³, was einer NO 2 -Grenzwertüberschreitung gleichkommt. Juristisch gilt der Grenzwert als eingehalten, wenn der ermittelte Jahresmittelwert unterhalb von 40,5 µg/m³ liegt. Ein Fahrverbot für Diesel-Pkw bis einschließlich Euro 5 (Szenario 1) sowie ein Fahrverbot für Diesel-Pkw bis einschließlich Euro 6c (Szenario 3) reicht hingegen für 11 bzw. 10 Straßenabschnitte nicht aus, um NO 2 -Werte von unter 40 µg/m³ zu gewährleisten. Zudem zeigt sich, dass durch diese Fahrverbote Verkehrsverlagerungen in die umliegenden Straßen dazu führen, dass an 5 bzw. 8 Straßenabschnitten, an denen ohne Fahrverbote die NO 2 -Werte unter 40 µg/m³ lagen, nun dort Werte über 40 µg/m³ prognostiziert werden. Ein Fahrverbot nur für schwere Nutzfahrzeuge über 3,5 Tonnen bis einschließlich Euro V (Szenario 4) an Streckenabschnitten, an denen laut Trend-Szenario für 2020 NO 2 -Werte über 40 µg/m³ vorhergesagt werden, führt zu der geringsten NO 2 -Reduzierung im Vergleich zu den 3 anderen Fahrverbotsszenarien. Zudem käme es aufgrund dieses Fahrverbots an der Invalidenstraße zu einer erstmaligen NO 2 -Überschreitung des Jahreswertes von 40 µg/m³, da vermehrt vom Fahrverbot betroffene Lkw diese Umfahrungsstrecke wählen würden. Neben der Minderung der NO 2 -Belastung in den Straßen mit Durchfahrtverboten führen jedoch die Ausweichverkehre an einigen Straßen auch zu neuen Überschreitungen des Jahresgrenzwertes von 40 µg/m³. Diese Abschnitte sind in der folgenden Tabelle 9 zusammengestellt. Für Abschnitte, bei denen neue Grenzwertüberschreitungen auftreten, müssen ebenfalls Maßnahmen zur Einhaltung des Luftqualitätsgrenzwertes ergriffen werden.

Ermittlung der Relevanz von Treibhausgas-Emissionen aus abflusslosen Gruben (Abwassersammelgruben) sowie aeroben und anaeroben Kleinkläranlagen

Mit dem Vorhaben erfolgt eine Überprüfung der THG-Relevanz der derzeit in Verwendung befindlichen dezentralen Abwasserbehandlungsanlagen. Dazu wurde eine Umfrage zur Anzahl von Kleinkläranlagen und abflusslosen Gruben in den einzelnen Bundesländern durchgeführt, um einen aktuellen Stand zu den bisher verbauten und in Betrieb befindlichen dezentralen Anlagen zu erhalten. Eine umfangreiche Literatur- und Quellenrecherche soll zeigen, inwieweit die Annahme, dass im Betrieb von Kleinkläranlagen keine Methan-, Lachgas- oder Ammoniak Emissionen entstehen, zutrifft bzw. ggf. korrigiert werden muss. Zusätzlich wird ermittelt, ob Kleinkläranlagen und Abwassersammelgruben bei der Abwasserentsorgung auch zukünftig zahlenmäßig relevant bleiben und wo es technische Neuerungen und Innovationen geben kann. Anhand der vorliegenden Daten werden Emissionen für 1990 bis 2019 berechnet und eine Prognose bis 2050 erstellt. Ergibt sich aus den Ergebnissen die Notwendigkeit ein Messprojekt durchzuführen, um die fehlenden Emissionsfaktoren (Methan (CH4), Lachgas (N2O) und Ammoniak (NH3) zu ermitteln, wird im Anschluss an das Projekt ein Messkonzept entwickelt. Quelle: Forschungsbericht

Straßenverkehr - Emissionen und Immissionen 2016

Immissionsprognose 2020/2025 ohne weitere Maßnahmen (Trendfall) Für die Luftreinhalteplanung ist es zunächst notwendig, die zukünftige Entwicklung der Luftqualität ohne zusätzliche Maßnahmen zu kennen. Denn nur auf dieser Grundlage kann der notwendige Umfang weiterer Maßnahmen bestimmt werden, die verursachergerecht, verhältnismäßig und wirksam sind. Betrachtet wurden das Jahr 2020 und das Jahr 2025 als längerfristige Perspektive. Während der Luftreinhalteplan bei Ursachenanalyse, Trendprognose und Untersuchung möglicher Maßnahmen alle relevanten Quellgruppen einbezieht, konzentrieren sich die hier dargestellten Kartenaussagen auf den Hauptverursacher bodennaher Luftbelastung, den Kfz-Verkehr . Die Prognoserechnungen wurden für die Jahre 2020 und 2025 durchgeführt. Eine vollständige Immissionsprognose umfasst folgende Schritte: Abschätzung der Schadstoff-Vorbelastung im regionalen Hintergrund unter Berücksichtigung der großräumigen Emissionsentwicklung. Prognosen über die Entwicklung der Bevölkerung und anderer Strukturdaten zur städtebaulichen und wirtschaftlichen Entwicklung in Berlin und der zu erwartenden gesamtstädtischen Emissionen, Prognose der Verkehrsbelastung im Hauptstraßennetz und der Entwicklung der Fahrzeugflotte, Modellierung des urbanen Hintergrunds unter Verwendung prognostizierter Emissionsentwicklungen für Berliner Quellen und Berechnung der Immissionskonzentrationen an Straßen. Die Prognose der Entwicklung der Emissionen des Berliner Kfz-Verkehrs basiert einerseits auf Annahmen zur Entwicklung der Fahrleistungen der verschiedenen Fahrzeuggruppen in Berlin und andererseits auf Annahmen zur technischen Modernisierung der eingesetzten Fahrzeugflotte. Für die Entwicklung der Fahrleistungen wurde die Gesamtverkehrsprognose Berlin 2030 für die Prognosejahre des Luftreinhalteplans adaptiert. Dies umfasst die Anpassungen der Bevölkerungsentwicklung, der Beschäftigtendaten, der Schulstandorte, der Verkaufsflächen und der Veränderungen in der Infrastruktur, z.B. zum Stand der Parkraumbewirtschaftung. In das Verkehrsmodell fließen auch neue Verkehre durch zusätzliche Flächennutzungen für Wohnen, Gewerbe und Handel mit ein. Das verwendete Verkehrsmodell des Landes Berlin ist ein integriertes Modell, in welchem sowohl der Kfz-Verkehr als auch der öffentliche Personennahverkehr und der Radverkehr abgebildet werden. Für die der Bestimmung Immissionsbelastung an Hauptverkehrsstraßen wurde – aufbauend auf den städtischen Hintergrundkonzentrationen – der lokale Zusatzbeitrag des Kfz-Verkehrs mit IMMIS luft berechnet und zur Hintergrundkonzentration addiert. Für das Jahr 2020 werden ohne weitere Maßnahmen noch für ca. 3,9 km Straßenzügen (davon 400 m an der Stadtautobahn A 100) NO 2 -Konzentrationen über 40 µg/m³ vorhergesagt. An diesen Straßen sind circa. 4.300 Menschen von den Grenzwertüberschreitungen betroffen.

DECOR - Verfahren Deutsches CORINAIR (German Corinair)

Die Emissionsberichterstattung hat in den letzten Jahren eine starke Ausweitung bezüglich der strukturellen Differenzierung und zeitnahen Berichterstattung (Berichtsjahr = Vorjahr) erfahren. Zur Erfüllung der Forderung nach transparenten, validierbaren und validierten Emissionsangaben wesentlicher bestehender Berichtsanforderungen wurde das Kernsystem des IT-Projekts DECOR, die Datenbank Zentrale System Emissionen (ZSE), sowie einer Anlagendatenbank (Point Source, PoSo) als Prototyp geplant und 2002 soweit fertiggestellt. Das Zentrale System Emissionen soll sicherstellen, dass in Zukunft zeitnah zur Veröffentlichung der Eingangsstatistiken Berichte zum aktuellen Emissionsgeschehen generiert werden und belastbare Prognosen in der erforderlichen Berichtstiefe bereitgestellt werden können. Außer dem Zentralen System Emissionen umfasst DECOR noch weitere Module, die der Erfüllung von Berichtspflichten dienen: · Der Datenpool Verteilungsparameter (surrogate data), der für die regionale Verteilung der Emissionen im Emissionsinventar CORINAIR erforderlich ist. Wo Datengrundlagen in der von CORINAIR benötigten Auflösung fehlen, werden geeignete sozioökonomische Bezugsdaten (z.B. Bevölkerung, Fläche) herangezogen, die es erlauben, auf der Bundesebene ermittelte Emissionsdaten auf die Kreisebene herunterzurechnen (Top-down-Verfahren). Diese Daten werden im Datenpool Verteilungsparameter verwaltet, der im Jahr 2001 erstellt wurde. · Das Gridding Tool, das zur Erstellung von Rasterdaten für EMEP im Rahmen des UN ECE-Luftreinhalteabkommens erforderlich ist. Mit dem Gridding Tool werden die regional differenzierten Daten aus CORINAIR auf das 50 km *50 km Raster von EMEP übertragen. Das Gridding Tool wurde im Jahr 2001 fertiggestellt. 2002 wurden die durch die Harmonisierung der Berichtsformate der UNFCCC - Common Reporting Format (CRF) - und der Genfer Luftreinhaltung - Selected Nomenclature of Air Pollution (SNAP) - notwendigen Änderungen hinsichtlich der Ausgabeformate eingebaut. Eine Visualisierung der Emissionsdaten über die Flächenverteilung wurde somit ermöglicht. · Das Modul PoSo (Point Source= Punktquelle), das für die Datenmeldungen zu Großfeuerungsanlagen im Rahmen der EU-Richtlinie) erforderlich ist. Die Ländermeldungen über Großfeuerungsanlagen werden in dem Modul "PoSo" für die jährlichen Berichtspflichten im Rahmen der EU verwaltet. Bisher existiert das Modul PoSo in einer prototypischen Anwendung, die in den Jahren 2001 und 2002 zur Vollversion weiterentwickelt wurde.

Erstellung einer methoden-konsistenten Zeitreihe von Stoffeinträgen und Ihren Wirkungen in Deutschland

In der vorliegenden Studie wird die Gesamt-⁠ Deposition ⁠ der ⁠ anthropogen ⁠ emittierten oxidierten Schwefelverbindungen (SOX-Snss), oxidierten Stickstoffverbindungen (NOX-N) und reduzierten Stickstoffverbindungen (NHX-N) auf der Datenbasis der Emissionsprognose des ⁠ BMU ⁠/⁠ UBA ⁠ Projektes „Strategien zur Verminderung der Feinstaubbelastung“ (PArtikel REduktions STrategien, PAREST, BMU/UBA FE-Nr. 206 43 200/01) für das ⁠ Prognose ⁠-Jahr 2020 ermittelt. Diese Emissionsprognosen, im PAREST-Projekt als Referenzszenario 2020 bezeichnet, sind Grundlage der Berechnungen mit dem LOTOS-EUROS Modell, das auf der Basis von Meteorologie-Daten des Jahres 2005 Ergebnisse für Trocken- und Nass- Depositionsflüsse im Prognose-Jahr 2020 liefert. Veröffentlicht in Texte | 15/2013.

Erstellung einer methoden-konsistenten Zeitreihe von Stoffeinträgen und Ihren Wirkungen in Deutschland

In der vorliegenden Studie wird die Gesamt-⁠Deposition⁠ der ⁠anthropogen⁠ emittierten oxidierten Schwefelverbindungen (SOX-Snss), oxidierten Stickstoffverbindungen (NOX-N) und reduzierten Stickstoffverbindungen (NHX-N) auf der Datenbasis der Emissionsprognose des ⁠BMU⁠/⁠UBA⁠ Projektes „Strategien zur Verminderung der Feinstaubbelastung“ (PArtikel REduktions STrategien, PAREST, BMU/UBA FE-Nr. 206 43 200/01) für das ⁠Prognose⁠-Jahr 2020 ermittelt. Diese Emissionsprognosen, im PAREST-Projekt als Referenzszenario 2020 bezeichnet, sind Grundlage der Berechnungen mit dem LOTOS-EUROS Modell, das auf der Basis von Meteorologie-Daten des Jahres 2005 Ergebnisse für Trocken- und Nass- Depositionsflüsse im Prognose-Jahr 2020 liefert.

Politikszenarien für den Klimaschutz VI

Im Projekt „Politikszenarien für den ⁠Klimaschutz⁠ VI“ werden die Treibhausgasemissionen für Deutschland auf der Basis von Modellanalysen für im Detail spezifizierte energie- und klimapolitische Instrumente analysiert. Im Aktuelle-Politik-⁠Szenario⁠ (APS) werden alle Maßnahmen berücksichtigt, die bis zum 8. Juli 2011 ergriffen worden sind (und nach dem 01.01.2005 erstmalig in Kraft traten oder geändert wurden). Im Vergleich zum Basisjahr 1990 wird bis zum Jahr 2020 eine Emissionsminderung für die vom Kioto-Protokoll erfassten Treibhausgase von 34 % erreicht, bis zum Jahr 2030 belaufen sich die Emissionsminderungen auf über 44 %.

Erschütterungen: Ermittlungsverfahren

Je nach Aufgabenstellung können Erschütterungen bei vorhandenen Erschütterungsquellen gemessen oder bei geplanten Quellen anhand von Berechnungsverfahren prognostiziert werden. Zur Beurteilung von Erschütterungsimmissionen durch Messungen kommen Messsysteme zum Einsatz, die den Anforderungen der DIN 45669-1 entsprechen müssen. Je nach Aufgabenstellung müssen die Messaufnehmer in Fundamentnähe, in den Deckenfeldmitten und in der obersten Deckenebene im Gebäude platziert werden. Die ermittelten Messergebnisse werden nach den Vorgaben der DIN 4150-2 für die Einwirkung auf Menschen in Gebäude bzw. nach der DIN 4150-3 für die Einwirkungen auf die Bauwerke ausgewertet und mit den entsprechenden Anhaltswerten der Norm beurteilt. Für die Beurteilung der Einwirkungen auf den Menschen in Gebäuden werden die bewerteten Schwinggrößen K BFTi der jeweiligen Teilabschnitte erfasst. Hierbei handelt es sich um jeweils den größten Wert, der in einem Zeitfenster von 30 s auftritt. In Abbildung 1 ist die Ermittlung der K BFTi -Werte dargestellt. Der Taktmaximal-Effektivwert K BFTm ergibt sich nach der nachfolgenden Gleichung, wobei N die Anzahl der Takte von jeweils 30 s darstellt. Werte für K BFTI ≤ 0,1 werden dabei mit dem Wert 0 ersetzt, da diese Erschütterungen in der Regel nicht wahrnehmbar sind. Als Messgröße zur Beurteilung der Erschütterungseinwirkungen auf bauliche Anlagen wird der Betrag der höchsten unbewerteten Schwinggeschwindigkeit v max herangezogen. Bei kurzzeitigen Erschütterungen muss zusätzlich die maßgebliche Frequenz bestimmt werden. In Abbildung 2 ist die Schwinggeschwindigkeit v in [mm/s] über die Zeit t [s] aufgetragen. Die zur Beurteilung heranzuziehende Größe v max beträgt im dargestellten Beispiel den Betragswert von -24,3mm/s (siehe Abbildung 2). . Die Prognose von Erschütterungen kann rein numerisch oder in einem kombinierten Verfahren aus Messung und Berechnung erfolgen. Prognosen sollten immer so ausgelegt sein, dass sie ein Ergebnis auf der „sicheren Seite“ liefern. Je einfacher und somit ungenauer das Prognoseverfahren ist, desto höhere Sicherheiten muss dieses enthalten, um nachweisen zu können, dass die Anhaltswerte sicher eingehalten werden. Sofern das vereinfachte Prognoseverfahren nicht zu einer sicheren Beurteilung führt, muss das Prognosemodell verfeinert werden. Dies erfolgt z. B. in dem man ein spektrales Prognoseverfahren verwendet. Solche Prognosen können dann im Regelfall nur noch durch spezialisierte Ingenieurbüros erstellt werden. In diese Prognose fließt sowohl die Emission, der Ausbreitungsweg und ggf. auch erforderliche Schutzmaßnahmen ein. Bei der Dimensionierung von Schutzmaßnahmen ist ein spektrales Prognoseverfahren unumgänglich, da das Schutzsystem auf den Emittenten abgestimmt sein muss.

Vorstudie zur Abschätzung der Baseline-Emissionen eines CDM-Windkraftprojektes in China

Das Projekt "Vorstudie zur Abschätzung der Baseline-Emissionen eines CDM-Windkraftprojektes in China" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.

Referenzszenario für den Gebäudebereich in Deutschland

Das Projekt "Referenzszenario für den Gebäudebereich in Deutschland" wird vom Umweltbundesamt gefördert und von Ecofys Germany GmbH durchgeführt. Ziel der Studie ist die Entwicklung eines Referenzszenarios im Gebäudebereich für das Gesamtziel 40Prozent CO2 -Einsparung bis 2020 , welches sich auf den deutschen Gebäudebestand und die CO2 -Emissionen im Jahr 1990 bezieht. Das Referenzszenario stellt die Wirkungen von Politikmaßnahmen für den Gebäudebereich dar, die bis zum 1.1.2010 implementiert worden sind. Grundsätzlich werden alle Gebäude der Sektoren Haushalte, Gewerbe-Handel-Dienstleistung betrachtet. In einer Szenarienrechnung vom Jahr 2010 bis zum Jahr 2020 werden die Effekte der bis zum 1.1.2010 in Kraft befindlichen Politikmaßnahmen fortgeschrieben. Neben dem Hauptszenario werden hier auch Sensitivitäten für veränderte Sanierungsraten, die fortschreitende Klimaerwärmung und den Einfluss der Bevölkerungsentwicklung berechnet. Die Berechnungen werden mit dem von Ecofys entwickelten Built-Environment-Analysis-Model BEAM durchgeführt. Wesentliche Ergebnisse der Szenarienrechnung sind Entwicklungen von Flächen, Heizwärmebedarfen, Endenergie- und Primärenergieverbräuchen sowie CO2-Emissionen. Darauf aufbauend werden die Zielerreichungen in Bezug auf die Emissionsminderungen im Zeitraum 1990-2020 sowie die Heizwärmebedarfsreduzierung im Zeitraum 2008-2020 erläutert. Weiterhin werden Vorschläge für weitere Politikinstrumente gemacht, die zusätzlich ergriffen werden könnten sowie der weitere Forschungsbedarf skizziert.

1 2 3 4 524 25 26