API src

Found 35 results.

Related terms

Teilprojekt: MEA-Entwicklung für den Mikro-Stack

Das Projekt "Teilprojekt: MEA-Entwicklung für den Mikro-Stack" wird vom Umweltbundesamt gefördert und von BASF Fuel Cell GmbH durchgeführt. Gesamtziel des Vorhabens ist die Entwicklung eines hoch integrierten Mikrobrennstoffzellensystems, das hinsichtlich Kosten und Gewicht das Optimum des Standes der Technik darstellt. Dazu wird ein Mikro-Brennstoffzellesystem auf Basis von Hochtemperatur-PEM-Technologie entwickelt. PEMEAS entwickelt dafür eine kostenoptimierte Membran-Elektroden-Einheit (MEA) und unterstützt die Projektpartner bei der Anwendung der MEAs. Schwerpunkt bei PEMEAS ist die Reduktion der MEA-Kosten durch Verminderung des Platingehalts um 40 Prozent bei gleich bleibender Leistung. Von PEMEAS werden ausreichende Mengen an MEAs für die Projektpartner hergestellt (Test und Prototyp). Weiterhin wird ein fertigungsfreundliches MEA Design entwickelt, das für den Schritt in die kostengünstige Massenproduktion geeignet ist. PEMEAS unterstützt die Projektpartner bei der Anwendung der MEAs, wie zum Beispiel bei der Auswahl von Stack-Materialien und bei der Ermittlung geeigneter Betriebsbedingungen. Die von PEMEAS entwickelte kostenoptimierte MEA kann über MIMEMIZ hinaus bei anderen Kunden aus dem Bereich der Mikro-BZ eingesetzt werden.

Klaergasaufbereitung zur Erhoehung des Brennwertes auf H-Gas-Qualitaet

Das Projekt "Klaergasaufbereitung zur Erhoehung des Brennwertes auf H-Gas-Qualitaet" wird vom Umweltbundesamt gefördert und von Landeshauptstadt Stuttgart, Tiefbauamt durchgeführt. Entfernung von CO2 und H2S aus dem Klaergas (Heizwert 6,5 KWh/m3). Dadurch wird der Brennwert angehoben und Umweltbeeinflussungen durch Schwefel werden vermieden. Zur Reinigung wird Monoethanolamin verwendet. Die Regeneration der Lauge erfolgt bei einer Temperatur von 110 Grad C und einem Druck von 0,5 bar. Zur Trocknung wird das aufbereitete Gas ueber Aluminiumoxide gefuehrt, das thermisch regeneriert wird. Das gereinigte Gas kann bei Bedarf mit Fluessiggas noch nachkonditioniert werden, damit der Brennwert von H-Erdgas (11,2 KWh/m3) erreicht wird.

Teilprojekt HTPEM / Truma

Das Projekt "Teilprojekt HTPEM / Truma" wird vom Umweltbundesamt gefördert und von Truma Gerätetechnik GmbH & Co. KG durchgeführt. Ziel des Vorhabens ist die Weiterentwicklung und Erprobung einer neuen leistungsfähigen MEA-Generation für den Einsatz in DMFC- und HTPEM-Brennstoffzellensystemen, die zu einer signifikanten Kostenreduzierung im Stackbereich führen soll. Das Projekt knüpft an an das Vorgängervorhaben STEP, in dem die Grundlagen für das ECPD-Verfahren (elektrochemische Pulsabscheidung) gelegt wurden und das jetzt zur Serienreife weiterentwickelt werden soll. Das Vorhaben wird zusammen mit den Unternehmen Elcomax (MEA-Hersteller) und SFC Energy (Anwender DMFC) durchgeführt. Aufgabe von Truma ist, die HT-PEM-MEA in das von Truma entwickelte Reformer-Brennstoffzellen-System zu adaptieren und zu erproben. Das System dient der Bordstromversorgung von Freizeitfahrzeugen und arbeitet mit dem im Caravaningmarkt bewährten und weit verbreiteten Energieträger Flüssiggas.

NextGenCell - The next generation of stationary fuel cells (NEXTGENCELL)

Das Projekt "NextGenCell - The next generation of stationary fuel cells (NEXTGENCELL)" wird vom Umweltbundesamt gefördert und von Vaillant GmbH durchgeführt. Objective: Designed as a joint EU and US collaborative effort in the framework of the EU-US Cooperation Agreement on fuel cells, NextGenCell aims to bring domestic fuel cell microCHP (1-5kWel) next step towards commercialisation. In FP5 Vaillant, Plug Power, and othe r European partners have demonstrated low temperature PEM fuel cell microCHP systems. Three major hurdles were identified: 1. Costs must be reduced significantly, 2. Reliability must be improved via system simplification, 3. System temperature must be increased. High Temperature (HT) PEM MEA technology at 160-180 C has the potential to overcome those hurdles. R&D on MEA, Fuel Cell System, components development and integration will lead to a developed and tested 1-5kW HT PEM fuel cell prototype microCH P system with modular design for global markets. Specific objectives relevant to TP 6.1 at production volumes are: 1. Total system costs less than 400 EUR/kW: - Significant system simplification (no CO clean-up and water management) - Increase mechanical stability of MEA - Reduction of system costs (e.g. of Balance of Plant, fuel processor, maintenance/recycling) and low cost bi-directional inverter development 2. Modular system design: - modular system design for different market applications (CHP and future tri-generation) - Increase electrical efficiency up to 35Prozent with 85Prozent total efficiency 3. Durability greater than 40.000 hours: - MEA Development with more stable cathode material and corrosion -resistant cathodes 4. Electronic control systems for optimal heat and power management and reduced costs; - CHP hydraulics concept Development (system scalability 1-5kW) - Embedded controller with 70Prozent less cost - microCHP Controls optimisation in a Virtual Power Plant. The team is based on strong industrial and scientifically partnership, includes a SME and participants from Acceding Country Bulgaria and Slovenia as one of the new member states. Five participants have expressed to join the Joint Technology Platform (JTI).

Optimierung und Ergänzung der Rauchgaswäsche zur Bereitstellung von CO2 für die Power-to-Fuel-Technologie

Das Projekt "Optimierung und Ergänzung der Rauchgaswäsche zur Bereitstellung von CO2 für die Power-to-Fuel-Technologie" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, Institut für Energie- und Umweltverfahrenstechnik, Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik LUAT durchgeführt. Im hier beantragten Forschungsprojekt soll die Optimierung und Ergänzung der Bereitstellung des Rohstoffs CO2 aus einer Rauchgaswäsche zur weiteren Verwendung für den Power-to-Fuel-Prozess (P2F) erforscht und untersucht werden. Dieser Einsatz setzt neben einem zuverlässigen und dynamischen Betrieb der CO2-Rauchgaswäsche bestimmte Anforderungen an den Rohstoff CO2 voraus. Der Schwerpunkt des Forschungsprojektes liegt in der robusten und optimierten Bereitstellung von CO2 einschließlich der Einhaltung erforderlicher CO2-Reinheitsanforderungen und des notwendigen CO2-Gasdrucks für die im P2F-Prozess folgende Methanolsynthese-Einheit. Dazu ist die Integration eines Verdichters, der zusätzlich die Funktion einer Feinreinigung des CO2 erfüllen soll, an die Anlage zur CO2-Abscheidung der Universität Duisburg-Essen am Kraftwerkstandort in Lünen vorgesehen. Neben der Erfüllung der Anforderungen an den Rohstoff CO2 spielen ebenfalls die Optimierung der Anbindung der CO2-Verdichtung an die CO2-Abscheidung und die Interaktion dieser Komponenten mit der nachfolgenden Methanolsynthese-Einheit eine entscheidende Rolle. Hierbei liegt der Fokus besonders auf der Untersuchung der Dynamik der Einzelsysteme infolge von Laständerungen der CO2-Abscheidung und der Auswirkungen auf den Gesamtprozess, um die Anforderungen einer flexiblen Fahrweise innerhalb der P2F-Technologie zu gewährleisten. Die Projektdauer beträgt insgesamt 24 Monate, untergliedert in fünf Abschnitte. In den ersten drei Monaten werden vorbereitende Maßnahmen zur Wiederinbetriebnahme der CO2-Abscheideanlage getroffen. In der darauf folgenden Phase von 6 Monaten beginnen die ersten Versuchsfahrten mit dem Absorptionsmittel MEA entsprechend der beschriebenen Arbeitspakete. In den folgenden Betriebsphasen drei und vier werden zwei weitere Absorptionsmittel entsprechend der Arbeitspakete eingesetzt und untersucht. Die letzte Phase betrifft die Auswertung und die Erstellung der Abschlussdokumentation.

Entwicklung und Optimierung eines Beschichtungverfahrens auf der Basis der Ink-Jet-Technologie zur Herstellung von Membran-Elektroden-Einheiten für Mikrobrennstoffzellen - Kurztitel: 'PEM-jet'

Das Projekt "Entwicklung und Optimierung eines Beschichtungverfahrens auf der Basis der Ink-Jet-Technologie zur Herstellung von Membran-Elektroden-Einheiten für Mikrobrennstoffzellen - Kurztitel: 'PEM-jet'" wird vom Umweltbundesamt gefördert und von H.I.A.T. gGmbH durchgeführt. In einem gemeinsamen Entwicklungsprojekt zwischen der HIAT gGmbH aus Schwerin und microdrop Technologies GmbH aus Norderstedt ist beabsichtigt, das lnk-Jet-Verfahren zur Herstellung von Membran- Elektroden-Einheiten (kurz M EAs) in der Brennstoffzellentechnologie als neue Auftragstechnik einzuführen und zu optimieren. Der Ink-Jet- Druck gewinnt in der Mikroelektronik immer mehr an Bedeutung. Durch die prinzipiell einfache Handhabung, Flexibilität und höchste Dosiergenauigkeit ist er nicht nur in der Polymerelektronik sondern auch in vielen anderen Bereichen von Interesse. In diesem Projekt stellt das Aufbringen metallischer partikelhaltiger Katalysatortinten eine besondere Herausforderung dar. Das Hauptaugenmerk bei der Anwendung der Ink-Jet- Technik besteht darin, ein stabil funktionierendes System aus Druckkopf und partikelhaltiger Tinte zu finden, um das schnelle und kostengünstigere Auftragen von Elektroden auf die Membran zu ermöglichen. Für eine sinnvolle Anwendung der lnk-Jet-Technik sind dabei zwei Aspekte von besonderer Bedeutung. Zum einen muss die Elektrode gut auf der Membran haften, um die Leistung der MEA zu gewährleisten und zum anderen muss die innere Stabilität der Elektrodenstruktur sowie die Haltbarkeit der Elektrode sichergestellt werden. Durch die Entwicklung einer Technologie zur massentauglichen Herstellung der MEAs werden die Materialkosten reduziert. Da durch Limitierung der Schichtdicke bei der Herstellung der MEAs durch das Siebdruckverfahren Grenzen gesetzt sind, wird hier eine Verringerung der Schichtdicke. Beladung auf die Hälfte angestrebt. Der Aspekt der Leistungsdichte darf dabei nicht aus den Augen verloren werden. Das gravierende Einsparungspotential besteht somit in der späteren Möglichkeit der Reduzierung an Materialkosten.

Wirkung von Additiven auf die Lösungsmechanismen von Flugaschen in zementären Systemen

Das Projekt "Wirkung von Additiven auf die Lösungsmechanismen von Flugaschen in zementären Systemen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Materialprüfungsamt für das Bauwesen, Baustoffe, Centrum Baustoffe und Materialprüfung durchgeführt. Steinkohlenflugasche (SFA) ist ein wertvoller und wichtiger Zusatzstoff für Beton. Neben günstigen Einflüssen auf die Verarbeitbarkeit von Frischbeton und die Dauerhaftigkeit von Festbeton können durch Zementeinsparung Ressourcen geschont und CO2 Emissionen reduziert werden. Nachteilig ist die späte puzzolanische Reaktion von SFA. Um diese Reaktion zu beschleunigen werden im Rahmen dieses Forschungsvorhabens organische, OH-gruppenhaltige Verbindungen eingesetzt, die die Glasstruktur der SFA auflösen und somit die Phasenbildung beschleunigen. Bei den verwendeten Additiven handelt es sich um Ethanolamine, die bereits in der Zementherstellung als Mahlhilfe Anwendung finden und Oxycarbonsäuren. Um die Wirkung dieser Additive auf die Lösung des Flugascheglases zu untersuchen werden künstliche Flugaschegläser hergestellt. In künstlichen Porenlösungen aus Kaliumhydroxid-Lösung (pH = 13) mit einem Calcium-Puffer aus Calciumhydroxid werden Lösungsversuche an diesen Flugaschegläsern durchgeführt. Die Porenlösungen werden zu unterschiedlichen Zeitpunkten mit der ICP-OES analysiert. An realen Flugaschen mit ähnlicher Zusammensetzung wie die künstlich hergestellten, werden weitere Lösungsversuche durchgeführt. Bei diesen weiteren Untersuchungen werden auch unterschiedliche Flugasche/Lösungs-Verhältnisse untersucht. Die Erkenntnisse aus den Lösungsverhalten von Flugaschen unter Zugabe von Additiven werden auf flugaschehaltige Zementleime übertragen. Dabei wird 25 M.-%, 50 M.-% und 75 M.-% Zement (CEM I) durch SFA ersetzt. Neben den Erstarrungszeiten werden auch Wärmeflussdaten der flugaschehaltigen Zementleime unter Zugabe von Additiven untersucht. Porenlösungen werden mit ICP-OES analysiert und mit Ergebnissen aus den Lösungsversuchen verglichen. In einem weiteren Schritt werden flugaschehaltige Mörtel auf ihre Festigkeitsentwicklung und die zeitliche Veränderung der Porosität untersucht. Ziel des Forschungsvorhabens ist es, die Mechanismen der Auflösung des Flugascheglases durch organische Verbindungen zu beleuchten und Aussagen über den Zusammenhang von Lösungsverhalten und Zusammensetzung von SFA zu treffen.

Effiziente Abtrennung von CO2 aus Kraftwerksrauchgasen mit Hilfe eines Sprühwäschers - Sprühwäscher Upscale

Das Projekt "Effiziente Abtrennung von CO2 aus Kraftwerksrauchgasen mit Hilfe eines Sprühwäschers - Sprühwäscher Upscale" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Feuerungs- und Kraftwerkstechnik durchgeführt. Ziel des Projekts ist die wissenschaftliche Untersuchung der nachgeschalteten CO2-Abtrennung aus Abgasen fossil befeuerter Kraftwerke. Dabei kommen sowohl neue technische Anlagenkonfigurationen als auch zu MEA alternative Waschlösungen zum Einsatz. Bei den alternativen Waschlösungen handelt es sich um ausgewählte Amine, wobei neue Mischungen sowie deutlich gesteigerte Konzentrationen untersucht und erprobt werden sollen. Ziel dabei ist es, den benötigten Energiebedarf zur Abtrennung des CO2 im Vergleich zu MEA zu senken. Als neue technische Variante wird der Einsatz eines Sprühabsorbers ohne Einbauten im Technikumsmaßstab untersucht. Durch den Einsatz der Sprühwäschertechnik wird ein kostengünstigerer Anlagenbau sowie flexiblerer Betrieb der Anlage erreicht werden. Des Weiteren werden im Rahmen der Versuche diverse technische Optionen und Verbesserungen erprobt. Eine Beschreibung der detaillierten Arbeiten befinden sich in beigefügtem Antrag sowie dem Übersichtsblatt 'Arbeitsplan'.

Teilvorhaben 1

Das Projekt "Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von Mitsubishi Power Europe GmbH durchgeführt. Im hier beantragten Forschungsprojekt soll die Optimierung und Ergänzung der Bereitstellung des Rohstoffs CO2 aus einer Rauchgaswäsche zur weiteren Verwendung für den Power-to-Fuel-Prozess (P2F) erforscht und untersucht werden. Dieser Einsatz setzt neben einem zuverlässigen und dynamischen Betrieb der CO2-Rauchgaswäsche bestimmte Anforderungen an den Rohstoff CO2 voraus. Der Schwerpunkt des Forschungsprojektes liegt in der robusten und optimierten Bereitstellung von CO2 einschließlich der Einhaltung erforderlicher CO2-Reinheitsanforderungen und des notwendigen CO2-Gasdrucks für die im P2F-Prozess folgende Methanolsynthese-Einheit. Dazu ist die Integration eines Verdichters, der zusätzlich die Funktion einer Feinreinigung des CO2 erfüllen soll, an die Anlage zur CO2-Abscheidung der Universität Duisburg-Essen am Kraftwerkstandort in Lünen vorgesehen. Neben der Erfüllung der Anforderungen an den Rohstoff CO2 spielen ebenfalls die Optimierung der Anbindung der CO2-Verdichtung an die CO2-Abscheidung und die Interaktion dieser Komponenten mit der nachfolgenden Methanolsynthese-Einheit eine entscheidende Rolle. Hierbei liegt der Fokus besonders auf der Untersuchung der Dynamik der Einzelsysteme infolge von Laständerungen der CO2-Abscheidung und der Auswirkungen auf den Gesamtprozess, um die Anforderungen einer flexiblen Fahrweise innerhalb der P2F-Technologie zu gewährleisten. Ein ausführlicher Arbeitsplan findet sich in Kapitel 8 der Vorhabenbeschreibung. In den ersten zehn Monaten wird das CO2-Verdichterkonzept mit Reinigung entwickelt. Die Inbetriebnahme und der Betrieb des CO2-Verdichters erfolgt in den darauf folgenden 12 Monaten, um die Anlagendynamik und die CO2-Qualität zu untersuchen. Daneben finden theoretische Modellierungen der Verdichtung statt. Das Scale-Up und die Wirtschaftlichkeitsanalyse der CO2-Bereitstellung sowie die Untersuchung der Flexibilisierungspotentiale von fossilen Kraftwerken runden den Arbeitsplan ab.

Hot PEM: Entwicklung neuer Membranen Das Projekt vereint neueste Membrantechnologie und die Modif. durch Ionenleitstrukturen zur Erreichung einer Protonenleitfähigkeit, ohne notw. externe Befeuchtung zur Entw. von PEM Hochtemperaturbrennstoffzellen

Das Projekt "Hot PEM: Entwicklung neuer Membranen Das Projekt vereint neueste Membrantechnologie und die Modif. durch Ionenleitstrukturen zur Erreichung einer Protonenleitfähigkeit, ohne notw. externe Befeuchtung zur Entw. von PEM Hochtemperaturbrennstoffzellen" wird vom Umweltbundesamt gefördert und von 3M Deutschland GmbH durchgeführt. Die derzeitig verwendeten Membranen für PEM-Brennstoffzellen benötigen Wasser, um ihre hohe Leitfähigkeit zu wahren. Als Lösungsansatz wird die Kombination der neuesten 3M Membrantechnologie mit der Technologie anorganischer Protonenleiter angestrebt. Ziel des Projektes ist die Entwicklung einer neuartigen Membrantechnologie, die zurzeit nicht herstellbar ist. Gezielte Polymerisation/Herstellung der Membran und Einbau von Schichtphosphate und schnellen Ionenleitern ist geplant. 1. Auswahl geeigneter Protonenleiter 2. Anpassung der Polymerstruktur 3. Membranerstellung und Charakterisierung. 4. MEA Erstellung und elektrochemische Charakterisierung 5. Alterungstests und Dauerhaftigkeitsevaluierung. Das Ziel des HotPEM Projekts ist die Umsetzung der Projektidee in eine funktionelle Membran mit einer Leitfähigkeit unabhängig von der Umgebungsbefeuchtung. Diese soll auch in der Brennstoffzelle verlässlich arbeiten und die übrigen Komponenten der Brennstoffzelle nicht negativ beeinflussen. Die zu entwickelnde Membran soll zunächst in einer in Deutschland noch aufzubauenden Pilotfertigung hergestellt werden.

1 2 3 4