API src

Found 831 results.

Related terms

WIR! - Waste2Value - Waste2Wood

WIR! - Waste2Value - Waste2Wood, TP1: Behandlung, Verdichtung, Prüfung

V1.3 Herstellung von Produkten aus recycelten Fasern, Teilprojekt 3

V1.3 Herstellung von Produkten aus recycelten Fasern, Teilprojekt 1

WIR! - Lausitz - Life & Technology - Innovative Windenergie-Technologien in der Lausitz

WIR! - Lausitz - Life & Technology - Innovative Windenergie-Technologien in der Lausitz, TP 1: Strömungsmechanische Optimierung von NFK-Rotoren

Entwicklung eines Leichtbau-Tanks für kryogenen Wasserstoff zum Einsatz in einer modularen, container-basierten Versorgungseinheit, TVH: Fertigung und Test von Demonstratoren

Im vorgeschlagenen Projektentwurf LeiWaCo soll ein kostengünstiger und gleichzeitig hochfester Leichtbau-Wasserstofftank aus Faserverbundwerkstoffen für Flüssigwasserstoff zu entwickelt werden mit dem Anwendungsziel des Einsatzes in einer neuen, branchenübergreifend einsetzbare Logistiklösung in Form einer containerbasierten Transport- und Versorgungseinheit. Daneben betrachtet das branchenübergreifend aufgestellte Konsortium aber auch die Adaption der entwickelten Technologien für Tanks in den Bereichen Straßenverkehr, Schifffahrt, Schienenverkehr und Luftfahrt. Eine der wesentlichen Herausforderungen bei der Entwicklung von kryogenen Faserverbundtanks ist die Dichtigkeit, die durch thermisch induzierte Mikrorisse im Material aufgrund der tiefen Temperatur von -253 Grad C beeinträchtigt wird. Dies soll im Projekt durch einen neuartigen Ansatz verhindert werden: Die Verwendung thermoplastischer Materialien in Kombination mit der Anwendung der Dünnschichttechnologie. Hierfür werden neue Konstruktions- und Berechnungsmethoden, neue Halbzeug und Materialtest, entsprechende Fertigungstechnologien und Prüfmethoden für das Bauteil entwickelt und angewendet. Im Rahmen des Projektes wir somit die komplette Wertschöpfungskette abgedeckt und anhand von Demonstratoren validiert. Am Ende des Projektes steht an ein Versuchsaufbau in Einsatzumgebung, wesentliche Technikelemente werden in relevanter Umgebung erprobt. Dies entspricht einem Technologiereifegrad von fünf, der die Basis für eine wirtschaftliche Verwertung der Ergebnisse im Anschluss an das Projekt darstellt. Am DLR in Stade (DLR FA) werden verschiedene Fertigungstechnologien entwickelt, erprobt und anschließend damit Funktions- und Fertigungsdemonstratoren hergestellt. Weiterhin werden in Bremen (DLR RY) grundlegende Tests zum Materialverhalten von Faserverbundwerkstoffen unter Wasserstoffbedingungen durchgeführt und die gefertigten Funktionsdemonstratoren mit Wasserstoff getestet.

Leichtbauweisen aus Typhapflanzen in kreislaufgerechter Architektur am Beispiel des 'Green Containers'

Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen, Teilvorhaben: Quasikontinuierliche Batch-Pyrolyse

Im Rahmen des Verbundvorhabens RE_SORT werden Pyrolyse-Technologien entwickelt, die das Recycling von dickwandigen Faserverbundstrukturen zum Ziel haben. In diesem Teilvorhaben wird eine Quasikontinuierliche Batch-Pyrolyse (QBP) entwickelt. Hierbei handelt es sich um einen Pyrolyseprozess, in dem das Matrixharz von dicken Faserverbundbauteilen (Glas- und Kohlenstofffasern) durch externe Erhitzung in ölige und vor allem gasförmige Verbindungen thermisch zersetzt wird. Das Pyrolysegas wird zur motorischen Erzeugung von Strom und Wärme sowie zum Beheizen der Pyrolysekammern genutzt. In der QBP werden die zu behandelnden Teile getrennt voneinander im ruhenden Zustand pyrolysiert, so dass die zurückbleibenden Fasern der Verbundmaterialien sortenrein dargestellt werden und in ihrer ursprünglichen Orientierung (Länge und Ausrichtung) für die nachfolgende Verwertung bereitgestellt werden können. Pyrolyseöle werden abgeschieden und für eine stoffliche Verwertung bereitgestellt. Im Rahmen des Teilvorhabens erfolgt die konstruktive und verfahrenstechnische Entwicklung der Versuchsanlage. Nach dem Vorliegen der notwendigen Genehmigungen erfolgt die Fertigung und die Errichtung der Versuchsanlage, deren Kern aus 3 miteinander verschalteten Pyrolysekammern mit einem Volumen von je ca. 10 m3 besteht. Im Rahmen des anschließenden Betriebs der Versuchsanlage erfolgt die weitere Prozessentwicklung, in der ermittelt wird, wie die Produktion von Pyrolysegas in Bezug auf Menge und Qualität über die Zeit für einen kontinuierlichen Betrieb gesteuert werden kann. Weiterhin werden die Prozessbedingungen für die Erzeugung möglichst hochwertiger Produkte (Glas- und Carbonfasern, Pyrolyseöl) optimiert. Darauf aufbauend wird eine großtechnische QBP-Anlage für die industrielle Nutzung konzipiert. Ziel ist es, die Entwicklung der QBP so weit voranzubringen, dass im Anschluss des Vorhabens eine erste großtechnische Pilotanlage errichtet werden kann.

WIR! - Lausitz - Life & Technology - Innovative Windenergie-Technologien in der Lausitz, TP2: Festkörpermechanische Entwicklung von NFK-Rotoren

1 2 3 4 582 83 84