API src

Found 256 results.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung durchgeführt. Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.

Special research area Transregio 129 (SFB TRR): Oxyflame - Development of Methods and Models to Describe Solid Fuel Reactions within an Oxy-Fuel Atmosphere; Sub project C03: Spectral modeling of thermal radiation in oxy-fuel pulverized coal flames

Das Projekt "Special research area Transregio 129 (SFB TRR): Oxyflame - Development of Methods and Models to Describe Solid Fuel Reactions within an Oxy-Fuel Atmosphere; Sub project C03: Spectral modeling of thermal radiation in oxy-fuel pulverized coal flames" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik durchgeführt. In Teilprojekt C3 sollen geeignete Modelle zur Berechnung der Wärmestrahlung von dreiatomigen Gasen in Oxyfuel-Flammen entwickelt werden. Ausgewählte vereinfachte spektrale Modelle sollen zunächst auf eine gemeinsame spektrale Datenbasis gebracht und dann anhand der Berechnung von Testfällen, die unter anderem Oxyfuel-Feuerungen repräsentieren, mit einem detaillierten Modell verglichen, evaluiert und weiterentwickelt werden. Hierbei soll ein Optimum hinsichtlich Genauigkeit und Recheneffizienz gefunden werden.

Turbulenzverhaeltnisse in Flammen

Das Projekt "Turbulenzverhaeltnisse in Flammen" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe, Engler-Bunte-Institut, Bereich Feuerungstechnik durchgeführt. Messung der Turbulenzeigenschaften von Flammen (Schwankungsgroessen/Laengenmasse), Einfluss auf Reaktionsverlauf; weitraeumig und mikroskopisch; Reaktionen nur in Zonen hoechster Temperatur; dort Einstellung der Gleichgewichte; u.a. wichtig fuer Bildung schaedlicher Zwischen- und Endprodukte.

Schadstoffminimierung bei Verbrennungsvorgaengen

Das Projekt "Schadstoffminimierung bei Verbrennungsvorgaengen" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Numerische und Instrumentelle Mathematik durchgeführt. In Kraftwerken und Muellverbrennungsanlagen ist es wichtig, Temperaturen und Schadstoffemissionen schon am Entstehungsort in der Flamme zu bestimmen. Im Projekt wurde ein System entwickelt, das das von der Flamme ausgestrahlte Licht auf vielen Messstrecken spektrographisch aufnimmt, hieraus Temperaturen und Schadstoffemissionsgrad bestimmt und anschliessend tomographisch auswertet. Die so gewonnenen Erkenntnisse werden zur Betriebssteuerung eingesetzt.

Teilprojekt: Chemische Grundlagen für die Modellentwicklung zur Motorenregelung

Das Projekt "Teilprojekt: Chemische Grundlagen für die Modellentwicklung zur Motorenregelung" wird vom Umweltbundesamt gefördert und von Universität Bielefeld, Arbeitsgruppe Physikalische Chemie I durchgeführt. Das Teilprojekt stellt die chemischen Grundlagen für die Forschergruppe bereit. Es widmet sich der Analyse von Speziesprofilen, die für die Entwicklung und kritische Validierung der reaktionskinetischen Modelle für die motorischen Teilprojekte benötigt werden und die dann in die Regelung einfließen. Diese Analysen sollen vornehmlich unter Niedertemperaturbedingungen an den Surrogatbrennstoffen iso-Oktan (für die GCAI-Verbrennung in TP3) und n-Heptan (für die PCCI-Verbrennung in TP4) in einem Strömungsreaktor erfolgen. Mehrere Teilaspekte stehen im Fokus der reaktionskinetischen Untersuchungen. Für die GCAI-Bedingungen steht die Veränderung der Zündwilligkeit unter Wasserzusatz im Vordergrund. Die Effekte variabler Addition von Wasser zu iso-Oktan sollen für ein Parameterfeld bei unterschiedlichen Bedingungen untersucht werden, um die Grundlagen des Wasserzusatzes auf die Reaktionskinetik im Niedertemperaturbereich zu verstehen und in die Modellbildung zu übertragen. Die geplanten Untersuchungen stellen weitgehend Neuland dar. Zur Unterstützung sollen einige Analysen hierzu auch unter den stabilen Bedingungen vorgemischter ebener Niederdruckflammen stattfinden. Für die Modellbildung im Bereich der PCCI-Verbrennung sind detaillierte Untersuchungen der Bildung von Rußvorläuferspezies im Bereich bis zu etwa vier aromatischen Ringen insbesondere unter Niedertemperaturbedingungen geplant. Während die Reaktionen zur Bildung des ersten aromatischen Ringes als sehr gut verstanden gelten können, weist das grundlegende Verständnis der Bildungskinetik in der molekularen Vorläuferphase bis zu etwa 3-4 aromatischen Ringen noch sehr große Lücken auf. Dieser Phase, an die sich die erste Partikelnukleation zum Beispiel über Dimerisierung der mehrkernigen Aromaten anschließt, kommt innerhalb der Reaktionsketten vom Brennstoffmolekül zum Rußkeim eine große Bedeutung zu. Das entsprechende fundamentale Wissen ist für die Modellentwicklung in TP4 von entscheidender Bedeutung. Die Arbeiten sollen daher auch durch die Untersuchung besonders brennstoffreicher Zonen in einer nicht vorgemischten Flamme unterstützt werden. Für beide motorische Verfahren ist es zudem interessant, die Einflüsse der Zumischung von Abgaskomponenten auf die Reaktionskinetik zu verstehen. Anknüpfend an die Untersuchungen zur Wasserbeimischung sind hierzu einige grundlegende Analysen geplant. Zur Erfassung der Spezies als Funktion der Reaktionsbedingungen sollen an allen Versuchsträgern verschiedene Varianten massenspektrometrischer Verfahren eingesetzt werden, mit denen in der Arbeitsgruppe große Erfahrung vorliegt. Als unterstützende Techniken werden Gaschromatographie sowie Laserverfahren zur Temperaturbestimmung eingesetzt.

Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung

Das Projekt "Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung" wird vom Umweltbundesamt gefördert und von Ruhr-Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie durchgeführt. In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.

B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen

Das Projekt "B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung durchgeführt. Laminare Oxyfuel-Flammen werden in einer Gegenstromanordnung untersucht. Als Brennstoffe werden unter anderem gasförmige Entgasungssurrogate und Kohlestaub verwendet. Hier wird besonders die Gasphasenchemie betrachtet, aber auch deren Beeinflussung durch die Entgasung und den Koksabbrand. Das Teilprojekt trägt dazu bei, die Interaktion von Strömung und Verbrennung von gasförmigen und festen Brennstoffen unter Oxyfuel-Bedingungen grundlegend zu verstehen und Modelle hierfür zu entwickeln. Der hier zu entwickelnde reaktionskinetische Gasphasen-Mechanismus dient als Grundlage für großskalige numerische Simulationen.

Kohlenwasserstoff-Emissionen bei der ottomotorischen Verbrennung

Das Projekt "Kohlenwasserstoff-Emissionen bei der ottomotorischen Verbrennung" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe, Engler-Bunte-Institut, Bereich Feuerungstechnik durchgeführt. Bei der motorischen Verbrennung entstehen Schadstoffe insbesondere durch unvollstaendige Verbrennung der Ausgangskohlenwasserstoffe und durch Nebenreaktionen. Die Schadstofferzeugung steht in unmittelbarem Zusammenhang mit dem Ablauf des Verbrennungsprozesses im Zylinderraum. Gegenstand des Vorhabens 'HC-Emission' ist die mathematische Erfassung der instationaeren turbulenten Stroemung im Motorraum. Zunaechst wird das Stroemungsfeld ohne ueberlagerte chemische Reaktion behandelt. In der zweiten Bearbeitungsphase wird ein vereinfachtes Reaktionsmodell eingearbeitet. Bis jetzt wurden das Stroemungsfeld fuer verschiedene Parameter (z.B. Drehzahl, Ventileinstroembedingungen) berechnet und dabei die Turbulenzstaerke und Turbulenzintensitaetsverteilung waehrend des Arbeitstaktes untersucht. Hieraus lassen sich bereits Schluesse auf Parameterbereiche der Motorauslegung ziehen, die fuer einen vollstaendigen Reaktionsablauf gueltig sind. Endgueltige Aussagen zum Reaktionsablauf und zu der Frage der HC-Emission sind erst nach dem Einbau des Reaktionsmodells moeglich.

Teilprojekt C01: Experimentelle Untersuchung der Kohlestaubverbrennung zur Validierung numerischer Simulationen

Das Projekt "Teilprojekt C01: Experimentelle Untersuchung der Kohlestaubverbrennung zur Validierung numerischer Simulationen" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Reaktive Strömungen und Messtechnik durchgeführt. Zur Validierung numerischer Simulationen werden Oxyfuel-Kohlestaubflammen mit unterschiedlichen Messtechniken detailliert hinsichtlich Strömungsfeld, Temperaturen, Gaszusammensetzung und Reaktionszonen untersucht. Dazu werden zunächst die Randbedingungen dieser Flammen definiert. Die bisher nicht an der Versuchsanlage eingesetzten Messtechniken werden an diese angepasst. Weiterhin wird zur genauen Bestimmung der Partikeltemperatur ein bestehendes Zwei-Farben-Pyrometer weiterentwickelt und eingesetzt. Zusätzlich wird ein Experiment zur Bestimmung der Gasstrahlung in Oxyfuel-Feststoffverbrennung konzipiert.

Bestimmung von Charakteristiken langsamer bis schneller H2-CO-Verbrennung und Ableitung von Risikokriterien (KEK)

Das Projekt "Bestimmung von Charakteristiken langsamer bis schneller H2-CO-Verbrennung und Ableitung von Risikokriterien (KEK)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Lehrstuhl für Sustainable Future Mobility durchgeführt. Ziel ist die Ausbildung eines/einer Promovierenden auf dem Gebiet der Containmentsicherheit und Verbrennungsmodellierung im Rahmen des KEK-Programms. Bei schweren Störfällen in Kernkraftwerken kann es zur Freisetzung von großen Mengen an Wasserstoff-Kohlenstoffmonoxid (H2-CO) Gemischen kommen. Aufgrund der weiten Zünd- und Explosionsgrenzen von H2-CO-Luft Gemischen ist die Bildung von zündfähigen Gemischwolken höchst wahrscheinlich. Wird die Flammenbeschleunigung numerisch unterschätzt, kann sich in der Simulation eine langsame Deflagration mit unkritischen Überdrücken einstellen, während die Realität schnelle Flammen bis hin zum Übergang in die Detonation zeigen kann. Zur Verbesserung der Simulationen von H2-CO-Luft-Gemischen besteht jedoch laut einer aktuellen Übersichtsarbeit zu experimentellen Arbeiten, die sich mit reaktorsicherheitsrelevanter Verbrennung beschäftigen ein Mangel an Flammenbeschleunigungsstudien. Wichtige Elemente, die zur frühen Flammenbeschleunigung beitragen wurden, bisher nicht betrachtet und sollen nun in diesem Vorhaben untersucht werden, dazu gehören: (1) Bestimmung von Charakteristiken langsamer bis schneller Verbrennung von CO mit H2 (2) Bereitstellung experimenteller Validierungsdaten zur Modellverbesserung (3) Ableitung von Risikokriterien (Sigma-Kriterium).

1 2 3 4 524 25 26