Der Verband Deutscher Sportfischer (VDSF) hat die Bachforelle zum Fisch des Jahres 2005 gewählt. Durch Verbauung und Regulierung von Flüssen und Bächen sind die Bestände zunehmend gefährdet. Die Bachforelle braucht für ihren Bestand naturnahe, durchgängige und strukturreiche Fließgewässer sowie eine hohe Wasserqualität. Die weite Verbreitung ist vor allem Besatzmaßnahmen zu verdanken.
Nagorka, Regine; Duffek, Anja Environmental Sciences Europe 33 (2021), 8 Globally, 2-Ethylhexyl-4-methoxycinnamate (EHMC) is one of the most commonly used UV filters in sunscreen and personal care products. Due to its widespread usage, the occurrence of EHMC in the aquatic environment has frequently been documented. In the EU, EHMC is listed under the European Community Rolling Action Plan (CoRAP) as suspected to be persistent, bioaccumulative, and toxic (PBT) and as a potential endocrine disruptor. It was included in the first watch list under the Water Framework Directive (WFD) referring to a sediment PNEC of 200 µg/kg dry weight (dw). In the light of the ongoing substance evaluation to refine the environmental risk assessment, the objective of this study was to obtain spatio-temporal trends for EHMC in freshwater. We analyzed samples of suspended particulate matter (SPM) retrieved from the German environmental specimen bank (ESB). The samples covered 13 sampling sites from major German rivers, including Rhine, Elbe, and Danube, and have been collected since mid-2000s. Our results show decreasing concentrations of EHMC in annual SPM samples during the studied period. In the mid-2000s, the levels for EHMC ranged between 3.3 and 72 ng/g dw. The highest burden could be found in the Rhine tributary Saar. In 2017, we observed a maximum concentration ten times lower (7.9 ng/g dw in samples from the Saar). In 62% of all samples taken in 2017, concentrations were even below the limit of quantification (LOQ) of 2.7 ng/g dw. The results indicate a general declining discharge of EHMC into German rivers within the last 15 years and correspond to the market data. Although the measured levels are below the predicted no-effect level (PNEC) in sediment, further research should identify local and seasonal level of exposure, e.g., at highly frequented bathing waters especially in lakes. In addition, possible substitutes as well as their potentially synergistic effects together with other UV filters should be investigated. doi: 10.1186/s12302-020-00448-w
technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing
Das Überschwemmungsgebiet für die Wabe und die Mittelriede ist mit der Verordnung vom 19.08.2011 neu festgesetzt worden. Die Verordnung ist nach der Veröffentlichung im Amtsblatt für die Stadt Braunschweig am 30.09.2011 in Kraft getreten.
Das Projekt "Long-term simulation of sediment transport in the Upper Rhine" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Bauingenieurwesen, Fachgebiet Wasserwirtschaft und Hydrosystemmodellierung durchgeführt. This research is a part of the project 'Sedimentmanagement of the Upper Rhine' and carried out in cooperation with BfG. The sediment management in the Upper Rhine River can be affected in the long-term by various natural or anthropogenic activities, e.g. the climate change and land use changes, restoration and engineering measures. To investigate such impacts, a long-term simulation of such scenarios is necessary. In this research, the long-term dynamics of the fine sediment budget in the Upper Rhine will be determined (i.e. how long does it take to refresh the top layer of the deposition?). Furthermore, morphodynamic processes in the Iffezheim reservoir with non-uniform bed composition will also be investigated using SSIIM 3D modeling system. High-resolution numerical models combined with other suitable methods will be chosen for the scenario analyse. The results will serve as the basis for a much coarser sediment budget model of the Upper Rhine. The research will include: - Coarsening of grid - Classification of upstream boundary condition - Time-series analysis - Artificial neural network.
Das Projekt "DAS: Stadt und Land im Fluss - Netzwerk zur Gestaltung einer nachhaltigen Klimalandschaft - KlimNet" wird vom Umweltbundesamt gefördert und von Universität Bochum, Geographisches Institut, Arbeitsgruppe Geomatik durchgeführt. Wie können wir als Bürgerinnen und Bürger dem Klimawandel in unseren Städten trotzen? Im Projekt 'Stadt und Land im Fluss - Netzwerk zur Gestaltung einer nachhaltigen Klimalandschaft (kurz: KlimNet)' sammeln wir sowohl leicht umsetzbare als auch verrückte Ideen, wie jeder und jede mit den spürbaren Auswirkungen des Klimawandels umgehen kann. Wir wollen wissen, welche Aktivitäten es schon gibt, um auf Hitze, Trockenheit, Starkregen, Hochwasser oder zunehmende Pollen zu reagieren und welche Maßnahmen Sie sich noch wünschen. Dabei sind der Phantasie erst einmal keine Grenzen gesetzt: Vielleicht sollte in einem Industriegebiet ein Park angelegt werden? Oder Sie haben eine Idee, wie man Straßenbäume bei zunehmender Trockenheit mit Wasser versorgen kann? Das Projekt möchte die ersten Schritte tun, diese Ideen umzusetzen. Um überhaupt erst einmal zu wissen, welche Auswirkungen bauliche Veränderungen wie Versiegelung von Flächen oder Begradigung von Flüssen auf das Klima haben, verknüpfen die Geographischen Institute der Universitäten Bonn und Bochum Satelittendaten der letzten 40 Jahre von NRW mit den Auswirkungen auf das Mikroklima. Außerdem werfen wir einen genaueren Blick auf die Klimakonzepte der Kommunen. Schwerpunkte des Projekts sind die beiden Pilotstädte Bonn und Gelsenkirchen. Ergebnisse sollen aber auch auf andere Städte übertragen werden.
Das Projekt "Two blade propeller turbine suspended under a barge using kinetic energy of river flows" wird vom Umweltbundesamt gefördert und von Bodan-Werft Metallbau durchgeführt. Objective: To demonstrate how a two bladed propellor turbine suspended under a barge can exploit the kinetic energy of a river to produce electricity. General Information: The barge will be moored in the river and the kinetic energy of the river used to drive the propellor turbine, thus eliminating the need for expensive civil works. It is expected that the main application would be to supply local communities not connected to the national grid system, particularly in developing countries. A further advantage of the scheme is that, unlike conventional hydro systems, it can be very easily replicated. Initially a suction tube to concentrate water flow was envisaged, but this has now been omitted as it became apparent that it was only of advantage in very deep rivers. Suitable control mechanisms are being investigated to match the requirement for constant generator speed to variable river flow rates. Head 0 metres River velocity 2-3 m/second Turbine propellor (1. 44 metres diameter) Turbine power 40 kW Generator synchronous End-use isolated system Achievements: The apparatus proved very successful concerning manufacture, transport, sea-going quality (local velocity of current up to 4 m/s were tested). stability with propeller swung up. Propeller support with lifting device and foundations for gears and generator. The two-bladed propeller could cope well with stripping off driftage. The chain (L approx. 2,8 m) is extremely suitable for the transmission of the high torque and can be adapted to suit power output. Fluctuations during the turning moment probably caused by vibrations of the chain can be reduced by baffle rods. Presumably turbulences around the 'suction pipe' contribute to the fluctuations. These turbulences could possibly be avoided or at least reduced by the profiling of the 'suction pipe' on the descending current side. By means of the demonstration model it can be proved that, in principle, the system functions. In case of a series production the control system must be improved appropriately. The turning moments left of the optimum of the moment curves, plotted against the rotations per minute, could not be determined, as the propeller dragged in the optimum area and either came to a stand-still or operated right of the optimum. Operation costs were estimated at approx. 7,5 per cent of the investment expenses, whereby it was assumed that paint work would have to be done every 3-4 years. The operation expenses could be brought down under good water conditions. The efficiency of the propeller could be maintained by regular cleaning. (Slight roughness caused by marine fouling causes a loss of up to 20 per cent). Whereas the entire floating body and the main parts of the machinery and the transmission have been developed for quantity production, the control system must still be further developed in this respect. The presumable service life is estimated to be approx. 15 years. The power output depends very strongly upon the flow...
Das Projekt "WWF-Alpenflussstudie 2011 - Freiheit für das Wilde Wasser" wird vom Umweltbundesamt gefördert und von PAN Planungsbüro für angewandten Naturschutz GmbH durchgeführt. Anlass: Die Alpen zählen zu den wertvollsten Ökoregionen Europas. Ihre naturnahen Wildflüsse bilden Korridore und strukturieren die Vielfalt von Arten und Lebensräumen. Viel Wasser ist noch nicht talwärts geflossen, seit sie aufgestaut, verbaut, eingedämmt oder begradigt, ihrer natürlichen Dynamik beraubt wurden und große Teile ihrer Auen eingebüßt haben. Angesichts dieser Schäden lässt sich der Verlust, aber auch die Wertigkeit des erhalten Gebliebenen ermessen. Der WWF Deutschland hat im Jahr 2010 an der Ammer, einem der letzten noch weitgehend intakten nordalpinen Fließgewässer, ein Projekt zum Schutz und zur Förderung der Arten- und Lebensraumvielfalt gestartet. Als Teil dieses Projekts möchte der WWF Deutschland auch einen Überblick über die Naturnähe anderer nordalpiner Gewässer gewinnen. Methodisch schauen wir über den Flusslauf der Ammer hinweg und richten den Blick hin zu anderen nordalpinen Wildflüssen. Denn deren Zustand hilft uns umgekehrt, auch die Probleme der Ammer besser zu verstehen. Zuletzt gibt uns diese Arbeit einen Kompass an die Hand, der uns den Weg weist, wo und wie der WWF auch zukünftig zum Schutz alpiner Flüsse beitragen muss. Die Fachbehörden können mit dieser Arbeit ihre Prioritäten überdenken und da, wo notwendig, neu setzen. Ziele der Studie sind: - die vergleichende Bewertung nordalpiner Wildflusslandschaften (insbesondere unter naturschutzfachlichen Aspekten und mit innovativen Ansätzen); - die Unterstützung bei der Auswahl von naturschutzfachlich sehr guten bzw. entwicklungsfähigen Wildflüssen für evtl. weitere Renaturierungsprojekte; -die Nutzung der Ergebnisse für Öffentlichkeitsarbeit oder Stellungnahmen zu geplanten Projekten (z. B. bei der Diskussion zur Entwicklung der Wasserkraftnutzung und - im WWF-Netzwerk - gemeinsamer Standards zur Qualifizierung von Wasserkraftanlagen). Für die Studie wurden Flüsse in der Schweiz, Österreich und Deutschland gesucht, die prinzipiell mit der Ammer verglichen werden können. Die Flüsse, die es zu finden galt, mussten folgende Kriterien erfüllen: - nordalpine Wildflüsse; Mündung in Rhein oder Donau, nicht ins Mittelmeer - Abfluss und Geschiebeführung (natürlicherweise) vom Gebirge geprägt -Ursprung im Hochgebirge und Verlauf im Alpenvorland - kein oder nur geringer Gletschereinfluss auf die Gewässer - mittlere bis große Gewässer, aber keine Ströme wie Rhein oder Inn. Folgende 15 Flüsse entsprachen den genannten Kriterien und wurden zur Untersuchung herangezogen: - Sense (Schweiz), - Reuss (Schweiz,) - Thur (Schweiz), - Bregenzer Ach (Österreich), Iller (Deutschland) Lech bis Augsburg (Österreich/Deutschland) Ammer/Linder (Deutschland) bis zum - Ammersee Loisach (Österreich/Deutschland), - Isar bis München (Österreich/Deutschland), - Mangfall (Deutschland), - Großache/Tiroler Achen (Österreich/Deutschland), - Traun (Deutschland), - Traun (Österreich), - Ybbs (Österreich), - Traisen (Österreich).
Das Projekt "Silicate and Baltic Sea Ecosystem Response SIBER" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. Regulation of rivers and eutrophication in river basins has largely reduced dissolved silicate (DSi) loads to the Baltic Sea, which is partly responsible for decreasing DSi stocks reported. Reductions in DSi stocks can also be influenced by enhanced deposition in Baltic sediments due to marine eutrophicaton. There are indications that the proportion of diatoms has decreased while flagellates have increased in the Baltic. Similar species shift as a consequence of reduced DSi loads due to damming and marine europhication with far reaching effects for coastal ecosystems are reported worldwide. This project aims to quantify the relative importance of reduced loads vs. marine eutrophicaton for decreasing DSi stocks and its possible ecological effects on phytoplankton assemblages. The proposed project is focused on the Baltic Sea, where the DSi problem is easier to discern, but the results have general relevance. SIBER integrates basic phytoplankton ecology (e.g. competition experiments, nutrient uptake kinetics) and environmental changes through land use (e.g. damming, eutrophication) into one coherent project. SIBER integrates DSi into a holistic approach to eutrophication, from where it has, unjustly, been left out for a long time.
Das Projekt "Flash-flood risk assessment under the impact of land use changes and river engineering works" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Wasserbau und Wasserwirtschaft, Fachgebiet Hydromechanik und Hydraulik durchgeführt. General Information: Large uncertainties affect the policies for mitigation of flood hazard in flashy streams. These descend from complexity of physical processes, including scale problems in both observation and modelling, and from the lacking knowledge on the effects of man-induced changes on flood frequency regime. The present proposal is aimed at reducing the above uncertainties, also searching for a unified approach to risk assessment in Europe. This requires a deeper insight of the unsolved complexity, jointly with an appropriate framework to include the river basin system in the analysis of extreme events. Accordingly, the major objectives of the project are (a)an insigth of complex mechanisms producing extreme flash-floods with (apparently) high return periods; (b)the production of physically-based methods for flood risk assessment, accounting for land use changes, and river engineering works; (c)the substantiation of criteria to evaluate regional sensitivity of flood risk to climate, land use changes, and river engineering works. These objectives are achieved through (l)the development of physically-based methods for regionalization of flood frequency estimates, because of the major role of spatial homogeneity; (2)the development of spatially-distributed methods for flood risk analysis based on derived distribution techniques, towards a unified approach to dynamics of flood frequency, including climate and the river basin system; (3)the development of spatially-distributed methods for flood risk analysis based on simulation techniques, in order to investigate flood mechanisms and compare flood hydrographs under different scenarios; and (4)the development of, and demonstration with spatially-distributed models for regional and basin cases studies as a paradigm for different climate, land use, river basin exploitment and flood regime in different countries of Europe (AT, DE, IT, ES, CH and UK). This is to assess the sensitivity of study areas to climate and land use variability. In addition, it will provide flood risk assessments under control and modified climate, land use and river regulation scenarios. Also, criteria are provided to integrate hydrological risk with historical data on land use, river regulation rules, river and catchment training works, as an essential issue to work out historical, present and modified scenarios, and to predict the response of a basin to future actions. Project benefits are user-friendly, integrated, spatially-distributed technologies at regional and basin scales; an improved, unified European framework for flood risk assessment; and objective criteria to substantiate the policies for mitigation of flood hazard in Europe. ... Prime Contractor: Politecnico di Milano, Centro Interdipartimentale di Ricerca in Informatica Territoriale e Ambientale; Milano.
Origin | Count |
---|---|
Bund | 91 |
Land | 18 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 80 |
Taxon | 1 |
Text | 20 |
unbekannt | 6 |
License | Count |
---|---|
closed | 25 |
open | 80 |
unknown | 3 |
Language | Count |
---|---|
Deutsch | 107 |
Englisch | 37 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 3 |
Datei | 2 |
Dokument | 4 |
Keine | 75 |
Unbekannt | 1 |
Webseite | 29 |
Topic | Count |
---|---|
Boden | 94 |
Lebewesen & Lebensräume | 105 |
Luft | 71 |
Mensch & Umwelt | 108 |
Wasser | 102 |
Weitere | 107 |