Das Projekt "Wasserstandsvorhersage fuer die Bundeswasserstrassen" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Gewässerkunde durchgeführt. Parallel zu einem rein statistischen Vorhersageverfahren wurde ein weitgehend deterministisches Flussgebietsmodell erarbeitet, das in Form einzelner hydrologisch-physikalischer Bausteine u.a. die Niederschlagskonzentration, die Abflussbildung und die Abflusstransformation beruecksichtigt. Nach Errichtung des Datenerfassungs- und Uebertragungssystems soll dieses deterministische Modell zunaechst fuer die taegliche Wasserstandsvorhersage am Pegel Maxau eingesetzt werden, wobei eine von der ETH Zuerich erstellte Wasserstandsvorhersage fuer den Pegel Rheinfelden einbezogen wird. Das Modell eignet sich auch zur Wasserstandsvorhersage waehrend fortschreitenden Ausbaus und bei kuenstlichen Abflussregulierungen. Es laesst sich daher vorrangig auch zur Steuerung von Hochwasserwellen einsetzen. Zur Zeit wird das Neckargebiet einbezogen und die Erweiterung auf den Rheinpegel Worms getestet.
Das Projekt "Verbesserung der agro-hydrologischen Simulation der Bewässerung in Flussgebieten unter extremen klimatischen Bedingungen mit Ensembles (icee)" wird vom Umweltbundesamt gefördert und von Universität Hannover, Institut für Hydrologie und Wasserwirtschaft durchgeführt. Die landwirtschaftliche Bewässerung gehört zu den größten Wasserverbrauchern weltweit. Bei hydrologischen und wasserwirtschaftlichen Studien, z.B. Klimafolgenabschätzungen, spielt die Bewässerung aufgrund ihres Einflusses auf die Wasserbilanz eine wesentliche Rolle. Der Bewässerungsbedarf kann durch höheren Bedarf an Nahrungsmitteln sowie Klimaänderungen regional stark ansteigen. Geringe Wasserverfügbarkeit kann die weitere Entwicklung der bewässerten Landwirtschaft limitieren. Daher ist eine zuverlässige Prognose des künftigen Bewässerungsbedarfs eine wesentliche Planungs- und Entscheidungsgrundlage für Landwirtschaft und Wasserwirtschaft. Die Bewässerung auf der regionalen Maßstabsebene (Flusseinzugsgebiete oder Bewässerungsprojekte von mehreren 100 km2 bis zu größer als 100.000 km2) kann in agrar-hydrologischen Flussgebietsmodellen wie SWAT simuliert werden. Vorhergehende Arbeiten zeigten sowohl das Potential, aber auch Defizite dieser Modelle im Vergleich zu Modellen auf der Feldskala. Der Modellunsicherheit in der Simulation der Bewässerungsmengen wurde auf beiden Skalen bisher wenig Beachtung geschenkt. Dies mag an vielen Faktoren liegen, u.a. auch der schlechten Verfügbarkeit von langjährigen Aufzeichnungen über die tatsächlich erfolgte Bewässerung und deren Steuerung. In diesem Vorhaben sollen sowohl die Parameterunsicherheit als auch die strukturelle Unsicherheit von agrar-hydrologischen Modellen für die Feldskala als auch die regionale Skala untersucht werden. Dazu werden Daten von langjährig betriebenen Versuchsfeldern zur Bewässerung in drei Ländern unterschiedlicher Klimazonen verwendet: Deutschland (Versuchsfelder Hamerstorf in Niedersachsen, humid), Indien (Versuchsfelder des IIT Kharagpur, Monsun) und USA (Versuchsfelder des USDA in Texas, semi-arid). Für das Modell SWAT werden Untersuchungen zur Parameterunsicherheit zu Bodenfeuchte, Bewässerung und Ertrag durchgeführt. Auf der Feldskala werden mehrere agrar-hydrologische Modelle gerechnet. Aus den Erkenntnissen der Feldskala sollen die Bewässerungsroutinen in SWAT verbessert werden, wobei auch Bodenfeuchte und Pflanzenwachstum als relevante Prozesse für die Triggerung der automatischen Bewässerung betrachtet werden. Mit dem Ziel, Prognosen des Bewässerungsbedarfs zu verbessern und mit Unsicherheitsinformationen zu versehen, wird für die Untersuchungsflächen ein Ensemble aus mehreren Modellen und mehreren Parametersätzen (Super-Ensemble) generiert. Dieses wird kalibriert und dadurch auf die besten Mitglieder reduziert (Sub-Ensemble). Anwendungen des Ensembles sind auf der langfristigen strategischen Ebene Klimafolgenschätzungen, auf der kurz- bis mittelfristigen operationellen Ebene die Bewässerungsberatung. Für letztere soll untersucht werden, ob die seit kurzem verfügbaren sub-saisonalen (S2S) Ensemblevorhersagen des ECMWF eine Verlängerung des Vorhersagezeitraums des Bewässerungsbedarfs auf bis zu einen Monat erlauben.
Das Projekt "Auswirkungen der Klimaänderung auf das Grundwasser und Niedrigwasser" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Hydrologie durchgeführt. Aufgrund aktueller Klimaprojektionen ist es sehr wahrscheinlich, dass in der Schweiz zukünftig vermehrt Trockenperioden insbesondere im Sommer auftreten werden. Längere Trockenperioden sind zum Beispiel kritisch für die Wasserversorgung, die Gewässerökologie, grundwasserabhängige Ökosysteme oder die Wassertemperatur und Wasserqualität. In solchen Trockenperioden ist das Grundwasser eine der wichtigsten Wasserressourcen für Fließgewässer. Dementsprechend ist das hydrologische Verhalten eines Einzugsgebietes bei Niedrigwasser oft durch Interaktionen zwischen Grundwasser und Oberflächenwasser (GW-OW-Interaktionen) gesteuert. Diese Interaktionen sind von einer starken räumlichen und zeitlichen Abhängigkeit geprägt. Mit Hilfe von physikalisch-hydrogeologischer und hydrologischer Modellierung unter Einbeziehung von detaillierten Messungen sollen trockenheitssensitive Einzugsgebiete identifiziert werden, um in diesen den Einfluss von Klimaänderung, Gebietseigenschaften und Wasserbewirtschaftung auf Niedrigwasser quantitativ abzuschätzen und geeignete Monitoringstrategien und Handlungsempfehlungen zu entwickeln. Dabei werden insbesondere Einzugsgebiete analysiert, welche hydrologisch und hydrogeologisch gut erforscht sind, um das Prozessverhalten von Einzugsgebieten als Kopplung aus hydrogeologischen Strukturen und hydrologischen Einzugsgebietsmodellen abzubilden. Durch die Analyse von GW-OW-Interaktionen kann sowohl der Einfluss von Gebietseigenschaften auf Niedrigwasser charakterisiert, aber auch die klimatische Sensitivität und die Zusammensetzung der Abflusskomponenten (Niederschlags-, Oberflächenwasser, Grundwasser) während Trockenperioden besser verstanden werden. Ein wichtiges Resultat wird ein weiterentwickeltes hydrologisches Modell sein, welches die wichtige GW-OW-Interaktionen aufgrund der vorherrschenden hydrogeologischen Struktur an dieser Schnittstelle berücksichtigt. Das konzeptionelle Modell wird es ermöglichen, die Resultate detaillierter physikalisch-basierter Modellanwendungen auf andere Gebiete zu übertragen. Hierbei sollen auch die Auswirkungen von langjährigen Trockenperioden untersucht werden. Die gewonnenen Erkenntnisse aus diesem Projekt sollen Anpassungsmaßnahmen an die Auswirkungen klimatischer Veränderungen unterstützen. Dabei sollen Werkzeuge zum Management von Wasserressourcen in Hinblick auf Trockensituationen entwickelt werden, wie z.B. die Ausweisung von Risikogebieten, die Verbesserung von Frühwarnung und eine Klassifizierung der Einzugsgebiete durch unterschiedliche Steuerungsmechanismen von Trockenheit (Klimasensitivität, Einfluss der Gebietseigenschaften).
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau (IWW) durchgeführt. Für die optimale Planung von Stadtentwässerungssystemen mittels mathematischer Simulationsmodelle werden lange kontinuierliche, zeitlich hoch aufgelöste Reihen des Niederschlages benötigt. Beobachtungsdaten stehen gewöhnlich nur in unzureichendem Maße zur Verfügung. Als Alternative können stochastisch generierte Niederschläge verwendet werden. Die Entwicklung eines stochastischen Niederschlagsmodells zur Erzeugung solcher Reihen und deren Testung hinsichtlich ihrer Eignung für verschiedene Fragen der Stadtentwässerung ist ein Hauptziel dieses Teilantrages. Ein weiteres Ziel besteht in der Untersuchung urbaner Flusshochwässer in kleinen städtisch geprägten Einzugsgebieten, deren optimale Modellierung nicht geklärt ist. Schließlich soll in Zusammenarbeit mit allen Projektpartnern des Verbundes ein einheitliches Vorgehen identifiziert werden, mit welchem eine deutschlandweite Bereitstellung repräsentativer Niederschlagszeitreihen ermöglicht wird. Niederschlagsmodellierung: 1) Weiterentwicklung N-Modell; 2) Regionalisierung N-Modell; 3) Synthetische Niederschläge aktuelles Klima; 4) Downscaling Niederschlag; 5) Synthetische Niederschläge zukünftiges Klima; 6) Ergebnisvergleich, Verfahrensauswahl - Urbane Flusshochwasser: 1) Aufbau, Kalibrierung der Modelle; 2) Sensitivitätsanalysen Landnutzung; 3) Langzeitsimulationen Gegenwart; 4) Überlagerungswahrscheinlichkeit Hochwasserwellen; 5) Erweiterung Flussgebietsmodell; 6) Langzeitsimulationen Zukunft.
Das Projekt "Hochwasservorhersage und -steuerung der Retentionsbecken im Einzugsgebiet des Wienflusses" wird vom Umweltbundesamt gefördert und von Institut für Wasser und Gewässerentwicklung Karlsruhe, Bereich Wasserwirtschaft und Kulturtechnik durchgeführt. In der Stadt Wien ist die Neugestaltung des Wienflusses mit der Umgestaltung des Flußbettes in eine erlebbare Wasserfläche mit einem begleitenden Fuß- und Radweg geplant. Dafür ist neben der Sanierung des Gewässerbettes die Errichtung eines zusätzlichen Entlastungskanal im bestehenden Flussbett vorgesehen. Voraussetzung dafür ist die Umsetzung eines erweiterten Hochwasserrückhaltekonzepts, das neben dem Ausbau der bestehenden Anlagen auf Basis eines Hochwasservorhersagemodells die Anforderungen einer ggf. bedarfs- und ereignisspezifischen Steuerung der Beckenstandorte ermöglicht. Langfristiges Ziel ist es auf Basis der modellierten Abflussvorhersage ein geeignetes Steuerungsreglement für die verfügbaren Hochwasserrückhalteräume zu finden, so dass in Anhängigkeit der prognostizierten Gefährdungslage notwendigen Schutzmaßnahmen rechtzeitig getroffen werden können. Das Einzugsgebiet des Wienflusses erstreckt sich bis zur Mündung in den Donaukanal über eine Fläche von AE = 230 km2. Davon entfallen auf das versiegelte und kanalisierte Wiener Stadtgebiet ca. 57 km2. Im den ländlichen Bereichen des Einzugsgebiets können aufgrund der geologischen Lage in der Flyschzone ungewohnt hohe Abflussbeiwerte auftreten. Die Charakteristik des Einzugsgebiets führt zu einer kurzen Reaktionszeit auf Niederschlagsereignisse und damit zu einem schnellen Ablaufen von Hochwasserwellen. Für einen effizienten, ereignisoptimierten Einsatz ist ein Modellkonzept erforderlich, dass im Hochwasserfall in kurzen Zeitschritten die aktuelle Hochwassersituation im Einzugsgebiet erfassen kann. Das Vorhersagemodell basiert daher auf einem flächendetaillierten Niederschlag-Abfluss-Modell (Flussgebietsmodell - FGM), das auf Basis einer ereignis- und gebietsspezifischen Datengrundlage über geeignete Modellparameter adaptiv an die vorhandene Abflusssituation angepasst wird. Dazu werden mittels Datenfernübertragung (DFÜ) Messdaten über Abfluss, Niederschlag und Temperatur im Einzugsgebiet an das Modell übermittelt. Mit den Inputgrößen einer Niederschlags- und Temperaturvorhersage kann das Modell somit Hochwasserabflussvorhersagen mit hoher Genauigkeit und ausreichend langer Vorhersagezeit berechnen. Ergänzend zu der bestehenden Modellkonzeption von 2000 wurde im Anschluss an den Auf- und Ausbau des Online-Messnetzes im Einzugsgebiet eine Anpassung der bisherigen Modellkomponenten daran durchgeführt worden. Ziel war es dabei die Struktur des bestehenden Vorhersagemodells an die Gegebenheiten und den Umfang des nun realisierten Online-Messnetzes im Einzugsgebiet anzupassen. Somit konnte die formale Installation des Vorhersagemodell 2007 durchgeführt werden. Anschließend soll nun zunächst eine Probeinstallation und -betrieb durchgeführt werden.
Das Projekt "Methodenentwicklung und Landschaftsanalyse" wird vom Umweltbundesamt gefördert und von Universität des Saarlandes, Fachrichtung 5.4 Geographie, Physikalische Geografie durchgeführt. Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.
Das Projekt "Methodenentwicklung, Potentiale Hochwasserminderung - Koordination" wird vom Umweltbundesamt gefördert und von Universität Kassel, Institut für Wasser, Abfall und Umwelt, Fachgebiet Wasserbau und Wasserwirtschaft durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Das Vorhaben wird gefördert vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Fördermaßnahme Risikomanagement extremer Hochwasserereignisse (RIMAX) . Bei der zu entwickelnden Methodik sollen mit begrenztem Aufwand aus vorhandenen Daten, wie z.B. ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahme und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Universität Kassel bearbeitet dieses Projekt zusammen mit dem Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland Pfalz, der Universität des Saarlandes, der Technischen Universität Braunschweig und der Technischen Universität Kaiserslautern. Die Projektkoordination wird von Roettcher Ingenieurconsult übernommen. Unter Retention versteht man die abflussabhängige Speicherung von Wasservolumen in einem Gewässerabschnitt. Für den Hochwasserschutz ist es von Bedeutung, inwieweit sich durch die Retention beim Durchgang einer Hochwasserwelle eine Scheitelabminderung oder Laufzeitverzögerung auswirkt. Das Retentionsvolumen ist abhängig von der Überschwemmungsfläche und von dem Wasserstand des Gewässers. Dieser kann durch eine erhöhte Rauheit, z.B. durch Gewässerrenaturierung, angehoben werden, wobei die lokale Hochwassergefahr in Siedlungsgebieten zu beachten ist. Die Ermittlung des Retentionsvolumens erfolgt mit einem hydraulischen Ansatz. Geometrische Eingangsgrößen beziehen sich auf Teileinzugsgebietsgrößen, die Rauheitsbeiwerte auf die Strukturgütekartierung. Das Retentionsverhalten wird über die Retentionszeit K beschrieben, die als mittlere Aufenthaltszeit des Wassers in einem Gewässerabschnitt angesehen werden kann. Bei der Abschätzung des Retentionspotentials werden für das untersuchte Einzugsgebiet positive und negative Referenzquerschnitte berücksichtigt. Die Methodik wird zunächst auf die Nahe (4.060 km2) mit einem vorhandenen Flussgebietsmodell angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda (6.947 km2) angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden, die für den deutschen Mittelgebirgsraum entwickelt wurden, in einem Anwenderhandbuch zusammenfassend beschrieben. Das Fachgebiet Wasserbau und Wasserwirtschaft der Universität Kassel übernimmt im Kooperationsprojekt die Abschätzung des absoluten und aktivierbaren Retentionsvolumens auf Basis einer GIS-gestützten hydraulischen Modellierung.
Das Projekt "Hydrologische Modellierung Nahe" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Fachgebiet Wasserbau und Wasserwirtschaft durchgeführt. Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.
Das Projekt "Hydrologische Modellierung Fulda" wird vom Umweltbundesamt gefördert und von Technische Universität Carolo-Wilhelmina zu Braunschweig, Leichtweiß-Institut für Wasserbau durchgeführt. Die Retentionsfähigkeit von Gewässernetzen hängt von der Belastung durch Hochwasserabflüsse und dem vorhandenen Retentionsvolumen von Gewässer und Aue ab. Üblicherweise wird diese Retentionsfähigkeit in zwei Schritten ermittelt: Zunächst mit Flussgebietsmodellen und anschließend mit Wasserspiegellagenberechnungen. Diese Methoden sind jedoch für großräumige Untersuchungen zu aufwändig. Ziel des Forschungsvorhabens ist die Entwicklung eines allgemein anwendbaren Bewertungsverfahrens für die Retentionsfähigkeit von Gewässernetzen als Entscheidungsgrundlage für die Praxis bei der Bewirtschaftung kleinerer und mittlerer Gewässer. Damit sollen mit geringem Aufwand aus vorhandenen Daten, wie z.B. Gewässerstrukturgüte, ATKIS-Daten oder digitalen Geländemodellen, großflächig Aussagen zur Retentionsfähigkeit von Gewässer und Aue abgeleitet werden. Durch systematische Bestandsaufnahmen und Digitalisierung von Daten der Landesverwaltungen sowie durch die kommerziellen geografischen Informationssysteme sind dazu neue Wege der Modellierung möglich geworden. Die Methodik wird für die Ökoregion Zentrales Mittelgebirge entwickelt, Hinweise zur Weiterentwicklung für die Ökoregionen Zentrales Flachland und Alpen werden gegeben. Es ist eine dreistufige Bearbeitung vorgesehen. In der ersten Stufe wird aus bereits entwickelten Ansätzen der Projektpartner eine geeignete Methodik entwickelt, um das Retentionspotenzial weit gehend aus amtlichen Informationen zu ermitteln. In einem zweiten Schritt wird das unter den aktuellen Gegebenheiten aktivierbare Retentionspotenzial ermittelt. In einem dritten Schritt wird dann die für das Hochwasserrisikomanagement wesentliche Scheitelreduzierung bestimmt. Die Ergebnisse werden mit den Ansätzen der Schritte 1 und 2 rückgekoppelt, sodass Abschätzungen zur Hochwasser reduzierenden Wirkung vorgenommen werden können, auch ohne ein Niederschlag-Abfluss-Modell einsetzen zu müssen. Die Methodik wird zunächst auf die Nahe mit einem vorhandenen Flussgebietsmodell (FGM) angepasst und ein Zusammenhang zwischen Retentionspotenzial und Scheitelreduzierung abgeleitet. Dieser wird anschließend auf das Einzugsgebiet der Fulda angewendet und überprüft. Zum Abschluss werden die erarbeiteten Methoden in einem Anwenderhandbuch zusammenfassend beschrieben.
Das Projekt "Szenarien hydrologischer Extreme - Zweidimensionales Downscaling von Klimamodellen auf tägliche Niederschläge mit Anwendungen in der Hydrologie" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Geowissenschaften durchgeführt. Es gehört zu den wichtigen Aufgaben aktueller Klima(folgen)forschung, mögliche Veränderungen der Hochwasserbedingungen fundiert abzuschätzen. Dies bedeutet nicht weniger als die sozioökonomisch definierten globalen Treibhausgasszenarien auf konsistente Weise in lokale, hydrologisch- und hochwasserrelevante Klimaszenarien zu übersetzen. Von globalen Klimamodellen (GCMs) sind lokale Informationen aber nicht direkt zu beziehen, weshalb zur Gewinnung der hydrologisch wichtigen Variablen ein s.g. Klima 'downscaling' (DS) notwendig wird. Der mangelhaften zeitlichen und räumlichen Repräsentanz vieler DS-Verfahren soll mit einer neuen Methodik abgeholfen werden. Dieses s.g. 'expanded downscaling' simuliert Wetterzeitreihen, deren zeitliche Variabilität unter normalen Klimabedingungen realistisch ist, sich aber Klimaveränderungen in konsistenter Weise anpasst. Hierdurch lassen sich dann, als Folge der globalen Erwärmung, nicht nur regionale Temperaturtrends studieren - was für die schmelzwasserbedingten Hochwasser wichtig ist, sondern insbesondere der Einfluss auf Niederschlagsextreme. Ein verfeinertes räumliches Interpolationsverfahren macht es darüber hinaus möglich, diese zeitlich hohe Auflösung auf ganze Regionen auszudehnen. Die Modellanpassung soll mit Hilfe der neuesten Zirkulationsanalysen (Reanalysen) gewonnen werden, wobei als ein Novum der für hydrologisches DS besonders wichtige atmosphärische Feuchtegehalt berücksichtigt werden soll. Die Auswirkungen der so abgeleiteten, geänderten klimatologischen Randbedingungen auf die Hochwassersituation werden exemplarisch für ausgewählte Einzugsgebiete anhand bewährter hydrologischer Einzugsgebietsmodelle demonstriert.
Origin | Count |
---|---|
Bund | 20 |
Type | Count |
---|---|
Förderprogramm | 20 |
License | Count |
---|---|
offen | 20 |
Language | Count |
---|---|
Deutsch | 20 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 13 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 16 |
Luft | 17 |
Mensch & Umwelt | 20 |
Wasser | 18 |
Weitere | 20 |