API src

Found 193 results.

Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld Sicherheitseinschluss, Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld 'Sicherheitseinschluss'

Das Projekt "Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld Sicherheitseinschluss, Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld 'Sicherheitseinschluss'" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-6: Nukleare Entsorgung und Reaktorsicherheit.

Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung

Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung Erkrankungen ( z.B. Krebs) und Schäden, die von ionisierender Strahlung ausgelöst wurden, lassen sich vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant häufiger auftreten als bei nicht exponierten Kontrollgruppen. Zur Bestimmung des strahlenbedingten Krebsrisikos wurden epidemiologische Studien bei strahlenexponierten Personengruppen durchgeführt. Die Abschätzungen des genetischen Strahlenrisikos für den Menschen stammen aus tierexperimentellen Untersuchungen, da es für genetische Strahlenschäden keine gesicherten, am Menschen gewonnenen Erkenntnisse gibt. Wenn ionisierende Strahlung auf den menschlichen Körper trifft, können Schäden in einzelnen Zellen oder Geweben entstehen. Bei den Strahlenschäden unterscheidet man grundsätzlich zwischen deterministischen und stochastischen Schäden. Deterministische Strahlenschäden ( z. B. Hautrötungen oder Haarausfall) treten auf, wenn jemand eine Strahlendosis von mehr als ca. 500 Millisievert ( mSv ) erhalten hat. Bereits unterhalb dieses Schwellenwertes können stochastische Strahlenschäden auftreten. Dabei handelt es sich um Erkrankungen (z.B Krebs) und Schäden, die nur mit einer bestimmten Wahrscheinlichkeit entstehen. Im Folgenden wird beschrieben, wie man solche Wahrscheinlichkeiten – in der Epidemiologie auch "Risiken" genannt – schätzen kann. Eine große Herausforderung besteht darin, dass sich solche strahlenbedingten Erkrankungen ( z.B. Krebs) vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant und über verschiedene Personengruppen hinweg konsistent häufiger auftreten als bei nicht exponierten Kontrollgruppen und sich ein Zusammenhang zwischen der Dosis und der Höhe des Erkrankungsrisikos ( Dosis -Wirkungs-Beziehung) nachweisen lässt. Abschätzung des Krebsrisikos Zur Bestimmung des strahlenbedingten Krebsrisikos wurden wichtige epidemiologische Studien vor allem bei folgenden Personengruppen durchgeführt: Überlebende der Atombombenexplosionen von Hiroshima und Nagasaki , Patienten, die zur Diagnostik und Therapie bestrahlt wurden ( z.B. die kanadische Fluoroskopie- Kohorte ), beruflich strahlenexponierte Personen ( z.B. die Wismut Uranbergarbeiter- Kohorte ), Bewohner in der Umgebung kerntechnischer Anlagen ( z.B. Hanford ( USA ), Mayak (Russland)), Bewohner aus der Umgebung havarierter Kernkraftwerke (Tschornobyl ( russ. : Tschernobyl) und Fukushima) und Personen, die bei den Aufräumarbeiten eingesetzt wurden oder werden, Personen, die von oberirdischen Atombombentests betroffen waren ( z.B. Bewohner in der Nähe des ehem. Atomwaffentestgeländes Semipalatinsk (Kasachstan)). Die wichtigsten Daten für die Abschätzungen des strahlenbedingten Krebsrisikos sind die Daten der japanischen Atombombenüberlebenden. Diese Gruppe war mit einer hohen Dosisrate exponiert (die gesamte Dosis im Bruchteil einer Sekunde), die Dosis war aber nur bei einem kleinen Prozentsatz der Betroffenen hoch. Das Krebsrisiko lässt sich anhand der oben genannten Studienpopulationen schätzen. Es setzt sich aus zwei Komponenten zusammen: dem "spontanen" Krebsrisiko in einer Population, also dem allgemeinen Risiko ohne Strahlenexposition an Krebs zu erkranken, und dem strahleninduzierten Krebsrisiko. Letzteres beschreibt Krebsfälle, die ohne Strahlenexposition nicht entstanden wären. Für beide Komponenten werden Modelle angenommen und geschätzt. Für die Schätzung der Dosis-Wirkungs-Beziehung wird typischerweise ein lineares Modell ohne Schwellenwert angenommen. D. h. man nimmt an, dass mit einer Erhöhung der Strahlendosis sich auch das Krebsrisiko proportional erhöht und dass es keinen Schwellenwert gibt, unterhalb dessen Strahlung nicht schädlich ist. Oft will man Aussagen zum Strahlenrisiko nicht nur für eine Studienpopulation ( z.B. die Atombombenüberlebenden), sondern auch für andere Populationen ( z.B. die deutsche Bevölkerung) treffen. Dann muss das in einer Studienpopulation ermittelte Strahlenrisiko auf das Strahlenrisiko der Zielpopulation übertragen werden. Für die relativ niedrigen Strahlenbelastungen, wie sie heute in der Umwelt und am Arbeitsplatz auftreten, ist eine weitere Extrapolation von den Befunden bei den japanischen Atombombenüberlebenden notwendig: Die epidemiologischen Befunde, die hauptsächlich für hohe Dosisraten vorliegen, werden auf die Expositionssituationen bei niedrigen Dosen und chronischer Exposition übertragen. Hierzu gibt es verschiedene Ansätze: Die ICRP empfiehlt im Bereich niedriger Dosen und chronischer Belastungen die Risikokoeffizienten durch den Faktor 2 zu teilen. Die ICRP geht nämlich davon aus, dass eine über einen längeren Zeitraum verteilte Dosis weniger wirksam ist als eine gleich hohe Dosis , die aus kurzzeitiger Belastung resultiert. Damit soll insbesondere die Reparatur- und Erholungskapazität von bestrahlten Zellen bei niedrigen Werten der Dosis und der Dosisleistung berücksichtigt werden. Die Reduktion ergibt sich nicht unmittelbar aus den Beobachtungsdaten für Krebserkrankungen bei Menschen und beruht auf Modellannahmen, aufbauend auf laborexperimentellen Erkenntnissen. Das BfS sieht die wissenschaftliche Begründung für diese Reduktion der Risikokoeffizienten für niedrige Dosen und chronische Expositionen als nicht ausreichend an. Risikoschätzungen sind grundsätzlich mit Unsicherheiten behaftet. Dies hat mehrere Gründe: Zum einen handelt es sich bei einer Studienpopulation nur um einen begrenzten Personenkreis, der nicht zwangsläufig repräsentativ für die interessierende Zielpopulation sein muss. Zum anderen werden für die Modelle und die Risikoübertragungen viele Annahmen getroffen. Des Weiteren ist die Erfassung der Strahlendosis häufig mit großen Unsicherheiten verbunden. Mehr Informationen zu strahleninduzierten Krebserkrankungen und deren Risiken finden Sie im Artikel " Krebserkrankungen ". Abschätzung des Risikos für andere Krankheiten als Krebs Eine Abschätzung des Risikos, nach Strahlenbelastung an anderen Krankheiten als Krebs zu erkranken, ist zurzeit nicht zuverlässig möglich. Auswertungen bei den Überlebenden der Atombombenabwürfe in Japan , bei exponierten Bevölkerungsgruppen in der ehemaligen Sowjetunion und bei Strahlentherapie-Patienten weisen darauf hin, dass auch Herz-Kreislauf-Erkrankungen nicht wie lange angenommen erst ab 0,5 Gray als späte deterministische Strahlenschäden auftreten können, sondern bereits bei niedrigeren Dosen. Die Annahme, dass Katarakte (Linsentrübungen des Auges) zu den deterministischen Strahlenschäden zählen, wird zurzeit ebenfalls in Frage gestellt. Auch hier gibt es neue Erkenntnisse, die darauf hinweisen, dass Katarakte bereits bei zehnfach niedrigerer Dosis auftreten als bis vor kurzem noch angenommen (0,5 Gray gegenüber fünf Gray ). Es wird diskutiert, dass für diese Erkrankungen möglicherweise keine Schwellendosis existiert, sie also wie bösartige Neubildungen als stochastische Strahlenschäden anzusehen sind. Abschätzung des Risikos für genetische Schäden Für genetische Strahlenschäden gibt es keine gesicherten, am Menschen gewonnenen Erkenntnisse. In Hiroshima und Nagasaki konnte bisher bei Nachkommen der bestrahlten Atombomben-Überlebenden keine erhöhte Rate von vererbbaren Strahlenschäden im Vergleich zur übrigen japanischen Bevölkerung festgestellt werden. Aus experimentellen Untersuchungen an Tieren ist aber bekannt, dass Strahlung genetische Veränderungen, sogenannte Mutationen, in Keimzellen auslösen kann. Daher stammen die Abschätzungen des genetischen Strahlenrisikos für den Menschen aus diesen tierexperimentellen Untersuchungen. Mehr Informationen zu strahleninduzierten genetischen Schäden und deren Risiken können Sie im Artikel " Vererbbare Strahlenschäden " nachlesen. Risikobewertung Die obigen Ausführungen zeigen, wie für einzelne Erkrankungen auf Basis einzelner Studien Strahlenrisiken ermittelt werden können. Eine fundierte Risikobewertung auf Basis eines einzigen Tierexperiments oder einer einzelnen epidemiologischen Studie am Menschen ist allerdings kaum möglich. Für die Bewertung gesundheitsbezogener Risiken durch Strahlung ist es erforderlich, die Ergebnisse aus mehreren Studien heranzuziehen und in einer zusammenfassenden Gesamtschau zu bewerten. Ein StrahlenschutzStandpunkt des Bundesamtes für Strahlenschutz thematisiert die Bewertung gesundheitsbezogener Risiken im Detail. Stand: 20.05.2025

Fukushima und die Folgen: BfS -Bericht über Unfallablauf und -ursachen

Fukushima und die Folgen: BfS -Bericht über Unfallablauf und -ursachen Im März 2012 veröffentlichte das BfS einen Bericht über den Ablauf und Ursachen Reaktorkatastrophe von Fukushima. Im Bericht legen die BfS -Experten wesentliche Faktoren dar, die zum schlimmsten Unfall seit Tschornobyl ( russ. : Tschernobyl) führten. Bericht vom 8. März 2012: "Die Katastrophe im Kernkraftwerk Fukushima nach dem Seebeben vom 11. März 2011: Beschreibung und Bewertung von Ablauf und Ursachen" Ein Jahr nach der Reaktorkatastrophe von Fukushima veröffentlichte das Bundesamt für Strahlenschutz ( BfS ) einen Bericht über Ablauf und Ursachen des Unfalls. Die Grundzüge des Unfallablaufs sind bekannt. Bei den Details der Vorgänge innerhalb der Reaktoren selbst waren die Fachleute bei der Erstellung des Berichtes auf Beobachtung von außen, Erfahrungswissen und Rekonstruktion aus anderweitig gewonnenen Daten angewiesen. Im Bericht legen die BfS -Experten wesentliche Faktoren dar, die zum schlimmsten Unfall seit Tschornobyl ( russ. : Tschernobyl) führten. Faktoren, die den Unfallablauf beeinflusst haben Das Erdbebenrisiko und entsprechend auch das Tsunami- Risiko wurden unterschätzt. Mit einem so starken Erdbeben hatten Seismologen trotz einer systematischen seismographischen Überwachung und sehr gut dokumentierter, mehr als tausendjähriger Erdbebengeschichte nicht gerechnet. Deshalb hielt man auch einen Tsunami dieser Höhe für unmöglich. Anders lautende Hinweise von Tsunamiforschern wurden nicht ausreichend berücksichtigt. Offenbar waren die Reaktoren nicht ausreichend gegen übergreifende Einwirkungen dieser Größenordnung wie Erdbeben und Tsunamis oder andere Überflutungen ausgelegt. Die technische Auslegung der Anlage, wie eine in allen Notfallsituationen einsetzbare und betriebsbereite Notstromversorgung, wies mehrere Schwachpunkte auf. Die Blöcke 1 bis 4 des Kraftwerks waren nur unzureichend gegen Überflutung geschützt. Insbesondere lagen die Notstromdieselaggregate und andere wesentliche Teile der Notstromversorgung so tief, dass sie überflutet wurden und sofort ausfielen. Sowohl die Kühlsysteme für die Reaktoren als auch die Kühlung der Notstromdieselaggregate waren an dasselbe System von Meerwasserpumpen angeschlossen. Die Zerstörung dieser Pumpen durch den Tsunami führte somit sowohl zum Ausfall der Kühlung der Reaktoren als auch zum Ausfall der Kühlung der Notstromdiesel. Der Kernkraftwerksbetreiber war auf Notfälle offenbar nur unzureichend vorbereitet. Bauliche und systemtechnische Nachrüstungen waren bei den – teilweise kurz vor dem Ende ihrer Laufzeit stehenden – Reaktoren offensichtlich nicht konsequent genug durchgeführt und Notfallmaßnahmen nicht ausreichend geprobt worden. Es fehlten klare Anweisungen für das Vorgehen im Notfall . Für abschließende Bewertungen zum Unfallablauf und insbesondere zu seinen Auswirkungen auf Umwelt und Gesundheit war es im März 2012 indes zu früh. Daher zeigten sich bei der Bewertung des Zustands der Reaktoren zum Zeitpunkt der Berichtserstellung die Grenzen des Erkennbaren. Stand: 09.01.2025

Konnte in Lebensmitteln deutschen Ursprungs Radioaktivität aufgrund des Unfalls in Fukushima nachgewiesen werden?

Konnte in Lebensmitteln deutschen Ursprungs Radioaktivität aufgrund des Unfalls in Fukushima nachgewiesen werden? Durch die große Entfernung zu Japan und die damit verbundene Verdünnung der freigesetzten radioaktiven Stoffe erreichte nur ein sehr kleiner Anteil der freigesetzten radioaktiven Stoffe Deutschland. Es konnten geringe Spuren an Jod und Cäsium nachgewiesen werden, die nur aufgrund der hohen Empfindlichkeit der Geräte bestimmt werden konnten. Nach dem Durchzug der radioaktiven Wolke wurden in Deutschland vom Max-Rubner-Institut in Kiel (Bundesforschungsinstitut für Ernährung und Lebensmittel) im April 2011 zusätzlich zur routinemäßigen Überwachung der Umwelt repräsentative Umweltmedien mit erhöhtem Messaufwand untersucht. Um die einzelnen Nahrungsketten zu prüfen, wurden Milch und Winterlauch beprobt. Die nachgewiesenen Werte lagen im Millibecquerel-Bereich. Spätere Proben lagen im Bereich beziehungsweise unterhalb der Nachweisgrenze der Messgeräte. Die gemessenen Werte waren so niedrig, dass eine gesundheitliche Gefährdung selbst bei erhöhtem Konsum von Milch und Freilandprodukten nicht zu befürchten ist.

Wegweiser Notfallschutz

Wegweiser Notfallschutz Radiologische Notfälle: Notfallszenarien, Folgen und Schutzmaßnahmen Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Je nach Art eines radiologischen Notfalls arbeiten Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands. Werden radioaktive Stoffe in stark erhöhtem Maße freigesetzt, spricht man von einem radiologischen Notfall . Die bekanntesten radiologischen Notfälle mit massiven Freisetzungen radioaktiver Stoffe in die Umwelt ereigneten sich 1986 in Tschornobyl ( russ. : Tschernobyl) in der Ukraine und 2011 in Fukushima in Japan. Was ist ein radiologischer Notfall? Quelle: christian aslund/EyeEm/Stock.adobe.com 2011: Der Unfall von Fukushima 1986: Der Unfall von Tschornobyl (russ.: Tschernobyl) Notfallszenarien und Schutzmaßnahmen Welche und wie viele radioaktive Stoffe in einem radiologischen Notfall austreten können und welche Auswirkungen auf die Umwelt und die körperliche und psychische Gesundheit der Bevölkerung in Deutschland zu erwarten sind, ist abhängig von der Art des Unfalls (Notfallszenario) . Bundes- und Länderbehörden, Anlagenbetreiber und/oder Katastrophenschutz im In- und Ausland arbeiten je nach Art eines radiologischen Notfalls eng zusammen, um die Bevölkerung rechtzeitig und wirkungsvoll zu schützen. Sie ergreifen bei Überschreitung der gesetzlich festgelegten Notfall-Dosiswerte unterschiedliche Maßnahmen zum Schutz der Bevölkerung und der Einsatzkräfte : Frühe Schutzmaßnahmen werden von den Katastrophenschutzbehörden der Bundesländer angeordnet und umgesetzt. Solche Maßnahmen sind etwa die Evakuierung von Menschen aus Gebieten, die in hohem Maße von radioaktiven Kontaminationen betroffen sein können, oder die Anordnung, dass Menschen zum Schutz vor radioaktiven Stoffen in Gebäuden bleiben sollen. Zum Schutz der Schilddrüse vor radioaktivem Jod kann für Menschen unter 45 Jahren in einem bestimmten Umkreis um einen Freisetzungsort auch die Einnahme von hochdosierten Jodtabletten angeordnet werden. Vorsorgende Maßnahmen, damit Menschen so wenig radioaktive Stoffe wie möglich mit der Nahrung aufnehmen, können etwa Ernte- und Verkaufsbeschränkungen für Lebensmittel sein. Welche Folgen hat ein radiologischer Notfall für Umwelt und Gesundheit? Video: Abläufe im radiologischen Notfallschutz Jodtabletten richtig einnehmen Nationale und internationale Zusammenarbeit In Deutschland sind die Aufgaben im nationalen radiologischen Notfallschutz auf verschiedene Behörden und Organisationen verteilt. Zum Beispiel tritt bei radiologischen Notfällen mit überregionalen Folgen für die Umwelt ein besonderer Krisenstab unter der Leitung des Bundesumweltministeriums zusammen: das Radiologische Lagezentrum des Bundes . Es stellt unter anderem Bundes- und Länderbehörden ein einheitliches Lagebild zur radiologischen Situation zur Verfügung, koordiniert radiologische Messungen , empfiehlt Schutzmaßnahmen und informiert die Bevölkerung. Da Strahlung nicht vor Ländergrenzen Halt macht, kooperiert Deutschland im radiologischen Notfallschutz auf internationaler Ebene bilateral mit Nachbarländern sowie europaweit und weltweit. Wer macht was im radiologischen Notfall? BfS unterstützt Bundesumweltministerium und Länderbehörden Das BfS ist Teil des Radiologischen Lagezentrums des Bundes . Automatische Messnetze des BfS und weiterer Institutionen überwachen kontinuierlich die radiologische Lage in der Umwelt Deutschlands . In einem radiologischen Notfall werden die Messungen intensiviert und durch mobile Messsysteme am Boden und/oder in der Luft ergänzt. Mitarbeitende des BfS üben regelmäßig die Abläufe im Ernstfall – mit Messfahrzeugen am Boden und mit Hubschraubern in der Luft . Im Informationssystem IMIS laufen alle Messergebnisse zusammen. Europäische und weltweite Messnetze wie das International Monitoring System der CTBTO ergänzen die Messungen auf internationaler Ebene. Auch radiologische Messungen am Menschen führt das BfS durch. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 10.10.2024

Evaluierung der Beanspruchbarkeit innovativer Hüllrohr-Schutzschichten für unfalltolerante Brennstoffsysteme (Accident-Tolerant Fuels, ATF)

Das Projekt "Evaluierung der Beanspruchbarkeit innovativer Hüllrohr-Schutzschichten für unfalltolerante Brennstoffsysteme (Accident-Tolerant Fuels, ATF)" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule University, Lehr- und Forschungsgebiet für Werkstoff- und Bauteilintegrität.

Vorbereitet für das Unwahrscheinliche

Vorbereitet für das Unwahrscheinliche Radiologischer Notfallschutz nach der Zeitenwende Gastbeitrag von BfS -Präsidentin Dr. Inge Paulini in der Magazinreihe "Moderner Katastrophenschutz" des Behördenspiegel Der russische Angriffskrieg auf die Ukraine hat das Sicherheitsempfinden in Europa verändert. Seit Beginn des Krieges ist die Sorge groß, dass kerntechnische Anlagen in Mitleidenschaft gezogen werden könnten. Selbst ein Einsatz von Kernwaffen scheint nicht mehr gänzlich ausgeschlossen. Und während die Kämpfe in der Ukraine unvermindert andauern, sorgt seit vergangenem Jahr auch der Krieg im Nahen Osten weltweit für Besorgnis. Krisen, Kriege und Konflikte rücken Gefahren, die lange Zeit undenkbar erschienen, wieder ins Bewusstsein der Bevölkerung. Schon die Covid-19-Pandemie und die Klimakrise haben für erhebliche Verunsicherung in der Bevölkerung gesorgt – und diese wurde durch die Kriege noch verstärkt. Die sicherheitspolitische Zeitenwende darf sich daher nicht nur auf die militärische Vorbereitung beschränken, sondern muss auch die zivile Verteidigung und insbesondere den Zivilschutz einbeziehen. Vorbereitung auch für vermeintlich unwahrscheinliche Fälle Jodtabletten Viele Bürgerinnen und Bürger stellten zu Beginn des Krieges gegen die Ukraine im Februar 2022 bange Fragen nach Bunkern oder schützender Kleidung. Das Bundesamt für Strahlenschutz ( BfS ) verzeichnete ein immenses Informationsbedürfnis zum Thema Jodtabletten im Zusammenhang mit einem möglichen Austritt von radioaktiven Stoffen . Die Frage danach, wie man sich selbst und die Nächsten im Katastrophenfall schützen kann, ist wieder relevant geworden. Um die Bevölkerung in einer Krise schützen zu können, braucht es gute Vorbereitung, auch für vermeintlich unwahrscheinliche Fälle, eine enge Abstimmung aller Akteure und eine verständliche Kommunikation – und das dauerhaft. Zivil- und Katastrophenschutz sind nicht nur bei oder kurz nach einem Ereignis von Bedeutung. Radiologisches Lagezentrum als übergeordneter Krisenstab Deutschland hat sich für einen möglichen radiologischen Notfall in den vergangenen Jahren gut aufgestellt. Nach dem Reaktorunfall im japanischen Fukushima 2011 wurden hierzulande viele Prozesse noch einmal überarbeitet und verbessert. So ist das Radiologische Lagezentrum des Bundes (RLZ) als übergeordneter Krisenstab für radiologische Notfälle eingerichtet worden. Expertinnen und Experten verschiedener Institutionen bewerten unter Federführung des Bundesumweltministeriums die Lage und leiten daraus Handlungsempfehlungen ab. Ziel ist es, Informationen an zentraler Stelle zusammenzuführen und im Notfall schlanke Strukturen zu nutzen. Maßgebliche Abläufe sind in einem Allgemeinen Notfallplan festgelegt, der 2023 verabschiedet wurde. Das BfS ist im Radiologischen Lagezentrum für die Messungen der Radioaktivität , für das Erstellen von sogenannten Lagebildern , die einen Überblick über den Unfall sowie Empfehlungen für Schutzmaßnahmen enthalten, sowie für die Krisenkommunikation zuständig. 1.700 Sonden zur Messung von Radioaktivität Dafür verfügt das Bundesamt über ein umfassendes Radioaktivitätsmessnetz : Mit 1.700 Messsonden über ganz Deutschland verteilt ist das Messnetz für die sogenannte Ortsdosis -Leistung ( ODL ) das umfangreichste weltweit. Damit verfügt Deutschland über ein effektives Frühwarnsystem. Wenn der Radioaktivitätspegel an einer Messstelle einen bestimmten Schwellenwert überschreitet, wird automatisch eine Meldung ausgelöst. Die Fachleute des BfS beobachten auch die Situation in der Ukraine seit Beginn des Krieges intensiv. Ein möglicher Unfall mit radioaktiven Stoffen in der Ukraine hätte für Deutschland voraussichtlich nur begrenzte Auswirkungen. Im schlimmsten Fall könnten bestimmte landwirtschaftliche Erzeugnisse nicht mehr in den Handel gebracht werden und dürften nicht mehr verzehrt werden. Selbst bei der Reaktorkatastrophe von Tschornobyl (russ.: Tschernobyl) 1986 waren weitergehende Maßnahmen zum Schutz der Bevölkerung, wie etwa Jodtabletten oder gar Evakuierungen, nicht erforderlich. Anerkennung als Teil der kritischen Infrastruktur erforderlich Auch nach dem Atomausstieg in Deutschland müssen wir mit Blick auf das europäische Ausland und mögliche internationale Krisen reaktionsfähig sein. Zu den wichtigen Aufgaben der nächsten Jahre zählen das ODL -Messnetz gegen Angriffe von außen zu schützen und die Durchhaltefähigkeit der Krisenstäbe in langen Bedrohungslagen zu stärken. BfS-Präsidentin Dr. Inge Paulini Aus Sicht des BfS ist das Radiologische Lagezentrum elementar für die nationale Krisenvorsorge und muss deshalb als Teil der kritischen Infrastruktur anerkannt werden. Auch in einer Multi-Krise darf die Einsatzfähigkeit nicht beeinträchtigt werden. Zivilschutz ist ein zentrales sicherheitspolitisches Handlungsfeld im Rahmen der Gesamtverteidigung, das weiterentwickelt und ausgebaut werden muss. Dafür braucht es die entsprechende Ausstattung und politische Unterstützung. Zugleich braucht es einen Bewusstseinswandel, um für künftige Krisen gewappnet zu sein: Dafür müssen sich die einzelnen Akteure - vom Bundeskanzler bis zum Landrat oder zur Bürgermeisterin und zu den Einsatzkräften - stärker vernetzen. Erforderlich ist ein gemeinsames Verständnis unterschiedlicher Katastrophenszenarien aus allen Bereichen sowie die Bereitschaft, nicht nur auf den eigenen kleinen Bereich zu achten, sondern auf den kompletten Prozess. Schnittstellen müssen berücksichtigt und Auswirkungen auf andere Bereiche, etwa in Wirtschaft und Gesellschaft, stärker bedacht werden. Auch heikle Themen müssen benannt werden Ein weiterer wichtiger Baustein des Krisenmanagements ist die Kommunikation. 2022 gab nur knapp die Hälfte der Befragten in einer Studie des BfS an, sie vertraue darauf, dass der Staat sie im Falle eines Unfalls in einem Kernkraftwerk schützen werde. Zugleich zeigte die Studie, dass Aufklärungsbedarf dahingehend besteht, wie sich die Bevölkerung bei einem möglichen Unfall im Umgang mit radioaktiven Stoffen verhalten soll. Hier besteht weiterhin deutlicher Verbesserungsbedarf. Bürgerinnen und Bürger müssen über mögliche Bedrohungen im Bilde sein und wissen, wie sich davor schützen können. Auch heikle Themen müssen klar benannt werden. Dazu gehört, über die Risiken des Einsatzes von Kernwaffen und die möglichen Folgen öffentlich transparent zu informieren. Wir können nicht erwarten, dass uns die Menschen vertrauen, wenn wir nicht offen mit Informationen zu Risiken umgehen. Dies alles erfordert einen dauerhaften Einsatz für den Zivil- und Katastrophenschutz. Um auch auf Dauerbedrohungslagen entsprechend reagieren zu können, braucht es Ressourcen und den Willen zur intensiven Zusammenarbeit, kurz: Es braucht politische Priorität. Diese aufrecht zu erhalten, auch wenn die Aufmerksamkeit möglicherweise wieder nachlässt, ist eine wichtige Zukunftsaufgabe. Stand: 20.09.2024

BASE-Abteilungsleiter führte Delegation bei AKW-Besuch in der Türkei

Im Mai 2024 besuchte der Chef der Abteilung Aufsicht im BASE , Sebastian Stransky, als Teil und Co-Teamleiter eines Peer Review Teams der European Nuclear Safety Regulators Group (ENSREG) das im Bau befindliche türkische AKW Akkuyu. Die Mission diente dem Abschluss der seit 2021 mit Unterbrechungen laufenden Überprüfung eines Berichts der türkischen Aufsichtsbehörde NDK zur sicherheitstechnischen Bewertung des Kraftwerkstyps (Stresstest). Seit dem Reaktorunfall von Fukushima hat ENSREG Peer Reviews für verpflichtende Stresstests in Atomkraftwerken in der Europäischen Union sowie freiwillig absolvierte in einigen Nicht- EU -Ländern durchgeführt. Die Türkei hat für den 2012 begonnenen Bau ihres ersten AKW in Akkuyu einen nationalen Bericht auf der Grundlage der ENSREG-Spezifikationen im Jahr 2018 vorgelegt. Das ENSREG-Peer-Review-Team prüfte diesen nationalen Bericht der Türkei umfassend in Bezug auf dessen Risiko - und Sicherheitsbewertung und erarbeitet derzeit die Endfassung des Untersuchungsberichts. Die Veröffentlichung des ENSREG-Berichts ist für den Herbst dieses Jahres vorgesehen. Das erste türkische AKW , das im Süden des Landes für rund 20 Milliarden Dollar gebaut wird, soll nach Fertigstellung seiner vier Reaktoren im Jahr 2028 zehn Prozent des türkischen Strombedarfs liefern. 29.07.2024

Entwicklung des Notfallschutzes in Deutschland

Entwicklung des Notfallschutzes in Deutschland Nach dem Unfall von Tschornobyl wurde 1986 das Bundesumweltministerium gegründet, drei Jahre später das Bundesamt für Strahlenschutz . Als direkte Folge von Tschornobyl entstand in Deutschland das "Integrierte Mess- und Informationssystem" (kurz IMIS ). Darin werden alle Messdaten offizieller Stellen zur Umweltradioaktivität gesammelt und ausgewertet. Mit 1.700 rund um die Uhr aktiven Überwachungssonden löst das flächendeckende ODL -Messnetz bei erhöhter Radioaktivität in der Luft Deutschlands automatisch Alarm aus. Nach dem Unfall in Fukushima 2011 sind Untersuchungsergebnisse des BfS in eine Empfehlung der Strahlenschutzkommission ( SSK ) zur Ausweitung der bisherigen Planungszonen für den Notfallschutz in der Umgebung von Kernkraftwerken eingeflossen. 1986: der Kalte Krieg ist noch nicht vorbei, Deutschland ist getrennt in DDR und BRD, und auch die (weltweite) Kommunikation geschieht ganz anders als heutzutage: Internet und Smartphones sind noch nicht erfunden. Als im April 1986 erste Meldungen und Bilder über einen Störfall im sowjetischen Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) bekannt wurden, herrschte zunächst Unsicherheit über das, was passiert war. Erst nach und nach gaben staatliche Stellen Bewertungen über das Ereignis ab. Die durch politische Rahmenbedingungen ohnehin dünne Informationslage wurde für die Bevölkerung in Deutschland zusätzlich diffus, da verschiedene staatliche Stellen unterschiedliche Verhaltensempfehlungen abgaben. Es gab keine bundesweit einheitlichen Richtwerte, keine gesetzliche Grundlagen und nur wenige Stellen, die die Radioaktivität in der Luft messen konnten. Internationale Abkommen über den schnellen gegenseitigen Informationsaustausch zu nuklearen Unfällen fehlten. 1989: Gründung des BfS In der Folge des Unfalls von Tschornobyl ( russ. : Tschernobyl) wurde noch im Jahr 1986 das Ministerium für Umwelt-, Naturschutz und Reaktorsicherheit ( BMU ) gegründet. Drei Jahre später folgte 1989 die Gründung des Bundesamtes für Strahlenschutz ( BfS ), welches unter anderem dafür zuständig ist, die Kontamination der Umwelt nach einem radiologischen Unfall schnell zu ermitteln und die Lage zu bewerten. Verschiedene wissenschaftliche Einrichtungen wurden im BfS integriert, so zum Beispiel das Institut für Strahlenhygiene des Bundesgesundheitsamtes in Neuherberg bei München, das Institut für Atmosphärische Radioaktivität des Bundesamtes für Zivilschutz in Freiburg, Teile der Physikalisch-Technischen Bundesanstalt in Braunschweig und (nach dem Mauerfall 1989) das Staatliche Amt für Atomsicherheit und Strahlenschutz der DDR in Berlin. Als Hauptsitz des BfS wurde Salzgitter gewählt. Gesetzliche Grundlagen Das Fehlen gesetzlicher Vorgaben führte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) dazu, dass teilweise unterschiedliche Grenzwerte und Maßnahmen im Bund und in den Bundesländern empfohlen wurden. Um die rechtliche Voraussetzung für ein bundesweit koordiniertes Handeln in vergleichbaren Situationen zu schaffen, wurde bereits am 19. Dezember 1986 das "Gesetz zum vorsorgenden Schutz der Bevölkerung gegen Strahlenbelastung" (Strahlenschutzvorsorgegesetz) erlassen. Zweck dieses Gesetzes war es, die routinemäßige Überwachung der Radioaktivität in der Umwelt neu zu regeln. Außerdem galt es, "die Strahlenexposition der Menschen und die radioaktive Kontamination der Umwelt im Falle von Ereignissen mit möglichen, nicht unerheblichen radiologischen Auswirkungen unter Beachtung des Standes der Wissenschaft und unter Berücksichtigung aller Umstände durch angemessene Maßnahmen so gering wie möglich zu halten". Inzwischen regelt das 2017 verabschiedete Strahlenschutzgesetz ( StrlSchG ) die Maßnahmen zum Schutz der Bevölkerung vor radioaktiven Stoffen . Es vereinheitlicht die bisherigen gesetzlichen Regelwerke im Strahlenschutz und sieht unter anderem den Aufbau des Radiologischen Lagezentrums des Bundes ( RLZ ) unter Leitung des Bundesumweltministeriums vor. Neuerungen seit Inkrafttreten des Strahlenschutzgesetzes (StrSchG) Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 15.06.2024

REFOPLAN 2022 - Ressortforschungsplan 2022, Radioaktivität in Klärschlamm - Erfassung des aktuellen Forschungsstandes unter Einbindung der Messdaten der IMIS-Datenbank

Das Projekt "REFOPLAN 2022 - Ressortforschungsplan 2022, Radioaktivität in Klärschlamm - Erfassung des aktuellen Forschungsstandes unter Einbindung der Messdaten der IMIS-Datenbank" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit , Bundesamt für Strahlenschutz (BMU,BfS). Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..

1 2 3 4 518 19 20