API src

Found 23 results.

Effects of canopy structure on salinity stress in cucumber (Cucumis sativus L.)

Das Projekt "Effects of canopy structure on salinity stress in cucumber (Cucumis sativus L.)" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum für Wein- und Gartenbau, Institut für Gemüsebau durchgeführt. Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.

Formation of mega-glendonites in the aftermath of the Paleocene-Eocene thermal maximum

Das Projekt "Formation of mega-glendonites in the aftermath of the Paleocene-Eocene thermal maximum" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Geologie und Paläontologie durchgeführt. Glendonites are pseudomorphs after the mineral ikaite (CaCO3 x 6H2O) and composed of calcite (CaCO3). In the past, they have been used as a paleo-thermometer because the primary mineral ikaite, according to observations and experiments, seems to be formed at temperatures near freezing, high alkalinity and high phosphate concentrations in marine sediments. An enigmatic occurrence of the largest glendonites known world-wide, in the Early Eocene Fur Formation of northwestern Denmark offers the unique possibility to shed more light on the actual mechanism and controlling parameters of ikaite formation. Right in the aftermath of the Paleocene-Eocene thermal maximum, a time known for its global pertubation in the global carbon cycle, the formation of authigenic calcium carbonate concretions start in the Fur Formation. In a specific stratigraphic interval inbetween these concretions, the glendonites can be found. We will investigate if termperature changes or changes in geochemical parameters of the Danish Basin caused the sudden formation of ikaite during a time interval that was based on known paleoclimatic reconstructions (semi tropic) not favorable for ikaite formation.

Holocene dynamics of tropical rainforest, climate, fire, human impact and land use in Sulawesi and Sumatra, Indonesia

Das Projekt "Holocene dynamics of tropical rainforest, climate, fire, human impact and land use in Sulawesi and Sumatra, Indonesia" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung für Palynologie und Klimadynamik durchgeführt. The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.

Late-Glacial and Holocene vegetational stability of southern South America

Das Projekt "Late-Glacial and Holocene vegetational stability of southern South America" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung für Palynologie und Klimadynamik durchgeführt. This project focuses on the long-term stability (or otherwise) of vegetation, based on a series of multi-proxy records in southern South America. We will build a network of sites suitable for high-resolution reconstructions of changes in vegetation since the Last Glacial Maximum, and use these to test a null hypothesis that changes in vegetation over the past 14,000 years are driven by internal dynamics rather than external forcing factors. The extent to which the null hypothesis can be falsified will reveal the degree to which we can expect to be able to predict how vegetation is affected by external events, including future climate change. The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W; Fontana, Bennett 2012: The Holocene), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites. Climate, dispersal barriers and/or fire disturbance may have played a role controlling the postglacial spread of Nothofagus. Climate change during the Lateglacial and early Holocene was a prerequisite for the expansion of Nothofagus populations and may have controlled it at many sites in Tierra del Fuego. The delayed arrival at the site, with respect to the Holocene warming, may be due to dispersal barriers and/or fire disturbance at eastern sites, reducing the size of the source populations. The retreat of Nothofagus woodland after 9000 cal. yr BP may be due to competitive interactions with bog communities. Volcanic disturbance had a positive influence on the expansion of Pilgerodendron uviferum and facilitated the development of mixed Nothofagus-Pilgerodendron-Drimys woodland.

MYFISH - Maximising yield of fisheries while balancing ecosystem, economic and social concerns

Das Projekt "MYFISH - Maximising yield of fisheries while balancing ecosystem, economic and social concerns" wird vom Umweltbundesamt gefördert und von Universität zu Kiel, Institut für Volkswirtschaftslehre, Lehrstuhl für Umwelt-, Ressourcen- und Ökologische Ökonomik durchgeführt. The MSY concept was included as a principle in the 2009 Green Paper on the reform of the Common Fisheries Policy (CFP) in accordance with the global imperative to manage fish stocks according to the maximum sustainable yield (MSY). This implies a commitment to direct management of fish stocks towards achieving MSY by 2015. Attaining this goal is complicated by the lack of common agreement on the interpretation of 'sustainability' and 'yield' and by the effects that achieving MSY for one stock may have on other stocks and broader ecosystem, economic, or social aspects. MYFISH will provide definitions of MSY variants which maximize other measures of 'yield' than biomass and which account for the fact that single species rarely exist in isolation. Further, MYFISH will redefine the term 'sustainable' to signify that Good Environmental Status (MSFD) is achieved and economically and socially unacceptable situations are avoided, all with acceptable levels of risk. In short, MYFISH aims at integrating the MSY concept with the overarching principals of the CFP: the precautionary and the ecosystem approach. MYFISH will achieve this objective through addressing fisheries in all RAC areas and integrating stakeholders (the fishing industry, NGOs and managers) throughout the project. Existing ecosystem and fisheries models will be modified to perform maximization of stakeholder approved yield measures while ensuring acceptable impact levels on ecosystem, economic and social aspects. Implementation plans are proposed and social aspects addressed through active involvement of stakeholders. Finally, effects of changes in environment, economy and society on MSY variants are considered, aiming at procedures rendering the MSY approach robust to such changes. The expertise of 26 partners from relevant disciplines including fisheries, ecosystem, economic and social science are involved in all aspects of the project. Global experience is engaged from North America and the South Pacific.

NEMO - Teilvorhaben: Integration and application of SIMTOOL within the NEMO framework

Das Projekt "NEMO - Teilvorhaben: Integration and application of SIMTOOL within the NEMO framework" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Solare Energiesysteme durchgeführt. The overall objective of the NEMO project is the development of a simulation and optimisation tool suite on the impact of a large volume of electric vehicles (EV) on the power grid. The tool suite is based on existing simulation tools of the three main consortium partners KEMA, Fraunhofer ISE, and EMD. These three tools will be further extended for grid impact of EVs, and a framework will be developed to integrate these tools in a cooperative suite for impact studies on all grid voltage levels. Fraunhofer ISE's objective within its subproject 'integration and assessment of SIMTOOL within the NEMO framework' is to extend its simulation and optimisation tool SIMTOOL to the assessment of EV grid impact. In the 1st project phase ISE will bring in its individual expertise and especially the functionalities and application field of the existing SIMTOOL software modules. This will be completed with a state-of-the-art survey leading to an inventory of tools and concepts relevant for the topic. The focus of the next project phase is the application of the NEMO tool suite including the extended SIMTOOL software and methodology for investigating exemplary case study situations with Fraunhofer ISE's special focus on abnormal charging situations. Finally the project team will concretise actions for implementing the project results and focus dissemination actions to such functionalities and target groups most promising for guaranteeing maximum impact.

Effects of biochar amendment on plant growth, microbial communities and biochar decomposition in agricultural soils

Das Projekt "Effects of biochar amendment on plant growth, microbial communities and biochar decomposition in agricultural soils" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für biologischen Landbau Deutschland e.V. durchgeführt. Biochar has a great potential to ameliorate arable soils, especially those that are low in organic matter due to intensive use or erosion. Biochar is carbonised organic material with high porosity that brings about changes in physical, chemical and biological soil functions. Biochar amended soils show a higher water and cation exchange capacity with reduced leaching and enhanced availability of plant nutrients. The microbial biomass in biochar amended soils is enhanced and more diverse. Biochar is stabilised organic material, which is likely to remain for hundreds of years in the soil. Photosynthetically fixed atmospheric CO2 stabilised in biochar may thus act as a direct carbon sink and help to mitigate climate change. As feedstock and production conditions produce different biochar qualities predictions of effects in soil need to consider biochar and soil properties case by case. To date biochar has been approved to ameliorate highly weathered tropical soils with positive effects on crop growth and yield. Distinct microbial groups were reported to be enhanced in soils but if this depends on the particular soil or biochar or a combination of both is an open question, especially in temperate climates. Likewise, it is not known if microorganisms colonising biochar surfaces are responsible for its mineralization or if they just use the new niches provided. The aim of the proposed project is to investigate the influence of two biochar types on soil-plant systems by determining i) soil nutrient availability, plant growth and nutrient uptake, ii) structure and function of soil microbial communities, iv) the decomposition and fate of biochar in soils. We will use two loessial soils from the well-known DOK-trial with different soil organic matter content. Other soils from the region will be selected to provide a wider range of soil quality, in particular pH. The biochars will be produced by pyrolysis and hydrothermal carbonization (HTC) from the C4-plant Miscanthus gigantea. Pyrolysis derived material has bigger pore sizes due to the evaporating gasses and is commonly alkaline, whereas the HTC derived biochar has a finer pore size, a much higher oxygen content and more acidic functional groups.

Schwerpunkt der deutschen Partner: Effektive Architekturen und Leistungswandler für Solarstromgeneratoren (PV/CPV) - ERG: Energy for a green society: from sustainable harvesting to smart distribution. Equipment, materials, design solutions and their applications

Das Projekt "Schwerpunkt der deutschen Partner: Effektive Architekturen und Leistungswandler für Solarstromgeneratoren (PV/CPV) - ERG: Energy for a green society: from sustainable harvesting to smart distribution. Equipment, materials, design solutions and their applications" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Halbleitertechnik, Lehrstuhl für Integrierte Analogschaltungen durchgeführt. The research, development and demonstration activities planned for the ERG project focus on the solar energy supply chain, starting form solar cells and proceeding along with innovative energy extraction (harvesting) techniques, high efficiency power conversion and finally managing the energy distribution inside a smart grid, with the target of different classes of applications, from house to small area, as well as application specific 'local grid' (healthcare, automotive, etc). By considering the full solar energy supply chain, we expect to produce relevant improvements of the industrial state-of-the-art in the efficiency of solar cells, in the optimization of energy generated by photovoltaic systems, in the loss reduction of power converters and, finally, in energy management strategy. At the initial chain-link of the energy value chain, the project aims to design and develop a set of innovative solar cells. In particular we primarily target the development of ultra-thin (20 micron) Si wafer PV cells, Si hetero-junction cells (tandem/multi-junction and hetero-junction contacts), novel architectures (e.g., back-contact), novel materials (for Si hetero-junctions, ARC, and passivation dielectrics), novel approaches for screen printing and laser processing, with focus to the case of back-contact cells. As a promising low-cost alternative to Si, ERG will pursue the goal of totally printable dye-sensitized-solar-cells (DSSC). This will include (a) printable electrolyte (to replace liquid electrolyte), (b) advanced TiO2 electrode, and (c) counter electrode (to meet high performance DSSC applications). The overall objective is to demonstrate DSSC products for commercial applications. The next downward chain-link addressed by the project deals with optimization of the energy generated by photovoltaic systems by focusing on power management electronics for silicon cell panels and on micro electromechanical systems for Concentrated Photovoltaic cells (CPV). The complete supply chains will be considered for optimum energy exploitation by Maximum Power Point Tracking (MPPT) and power conversion on module / segment levels for PV and also CPV solar generators. The architecture study will elaborate different profiles of end-users, including direct grid connection, energy storage option and E-mobility support. As the final chain-link is concerned, the project will develop behavioural models for the individual components of the 'Smart Grid'. This allows the development of optimal energy dispatching and battery charging algorithms. These algorithms will obtain their input from sensors distributed over the network, with typically, but not exclusive, a wireless communication infrastructure. A full set of demonstrators, including innovative PV cells, novel conversion systems for PV and CPV inverters, and network demonstrators based on a household application and an industrial application will complete the project deliverables.

Reinforcement of electron beam welding for application to heavy plates in offshore wind power plants

Das Projekt "Reinforcement of electron beam welding for application to heavy plates in offshore wind power plants" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Eisenhüttenkunde durchgeführt. Due to ecological reasons and because of the need to remain independent from foreign energy suppliers, the power generation in offshore wind parks becomes more and more important in Germany. It is therefore planned to build up approximately 1,300 new offshore wind power plants with a capacity of 6,500 MW near the German coastline until 2020. The structures are installed on the ground of the sea in a water depth that might in some cases reach 50 m. The mechanical loading situation for these structures is characterised by an enormous weight combined with high cyclic stresses resulting from the service loads and the tide. Hence, hot rolled steels with a yield strength of 355 MPa are employed in a maximum thickness of 100 mm. Until now, the required toughness properties for these structural steels and their welds are 40 J at -20 C. However, in a plate thickness of 100 mm, only the submerged arc welding (SAW) process can be used to guarantee such toughness properties, but especially in these heavy plates, submerged arc welding is rather time consuming and consequently more uneconomic compared to other welding techniques. Due to these disadvantages, it can even be expected that only part of the planned power plants will be built up in time as the high welding time of several hours per m causes too many delays. From the point of structural integrity, it can be argued wether a Charpy impact toughness of 40 J is really required, as this criterion is only set based on experiences of mechanical and civil engineers. Thus, it can be concluded that different welding techniques should be regarded as alternatives to SAW in case that the 'real' toughness requirements are less than 40 J at -20 C. Electron beam welding would be a favourable welding process for such heavy plates as even 100 m thick plates can be welded in one single step, but until now the toughness requirements of 40 J have not yet been met. It is therefore the aim of the research project to reinforce the electron beam welding process for the application to heavy plates in offshore wind power plants. To reach this aim, the following tasks are be carried out: - improvement of the electron beam welding process in order to achieve better toughness properties of the welds, - application of reliable fracture mechanics concepts in order to calculate realisitc toughness requirements. With regard to the process, already a this stage of the project an enormous improvement of the toughness properties of EB weld seams could be demonstrated based on optimisation of the welding process. Furthermore, it could be shown that by establishing the leakage before breakage criterion combined with regular inspections, the toughness requirements can be significantly reduced. Thus, the EB welding can be applied to offshore wind energy installations even if steels of higher yield strength (e.g. S460Q) are selected.

BOmobil - Entwicklung und Bau eines serientauglichen Elektrokleintransporters

Das Projekt "BOmobil - Entwicklung und Bau eines serientauglichen Elektrokleintransporters" wird vom Umweltbundesamt gefördert und von Hochschule Bochum, Institut für Elektromobilität durchgeführt. BOmobil - so heißt der Elektrokleintransporter, den die Hochschule Bochum mit den Partnern Composite Impulse, Delphi, Scienlab, den Stadtwerken Bochum und dem TÜV NORD, gefördert im Rahmen des Wettbewerbs ElektroMobil.NRW serienreif entwickelt. Die Anforderungen von klein- und mittelständigen Unternehmen für den Regionalverkehr der Zukunft bestimmen das Konzept. Elektromobilitat und ansprechendes Design müssen sich nicht ausschließen, das beweist das BOmobil. Technologisch zeigt der Prototyp eine radikale Abwendung von herkömmlichen Automobilkonzepten: keine zentrale Antriebseinheit mehr - stattdessen Radnabenmotoren. So entsteht Raum für die Neugestaltung des Innenraums. Zwei Sitzplätze, Platz für eine Normgitterbox, Höchstgeschwindigkeit ca. 130 km/h, Reichweite mehr als 150 Kilometer - Elektromobilität für den Alltag. Alle Komponenten des elektrischen Antriebsstrangs werden im sogenannten Skateboard untergebracht, der tragenden Struktur, die aus Aluminium-Leichtbau-Profilen genietet und geklebt wird. Diese Variante des Aufbaus ermöglicht eine hochfeste Struktur, die für einen Kleintransporter die nötige Crash-Sicherheit bietet und flexible Aufbauvarianten zulässt. Die Batterie, die Traktionswechselrichter und die Motoren sind organisch zueinander angeordnet. So lassen sich kurze Leitungswege und ein niedriger Schwerpunkt realisieren. Durch die selbst entwickelten Radnabenmotoren wird das Antriebsmoment dort generiert, wo es benötigt wird und die eingesparte Antriebseinheit im Aufbau vergrößert das Ladevolumen des Fahrzeugs. Für die Batterie kommt die Lithium-Eisen-Phosphat-Technologie zum Einsatz. Das nötige enge Temperaturband für deren Betrieb wird im Rahmen des Thermomanagement des Fahrzeuges realisiert. Die Auswahl geeigneter thermisch isolierender Karosserie- und Scheibenwerkstoffe ist dabei von zentraler Bedeutung, um eine aktive Kühlung bzw. Heizung in deutlich geringerem Maße als in konventionellen Fahrzeugen erforderlich zu machen. Die Karosserie wird aus ABS-Kunststoff und Faserverbund-Kunststoff gefertigt. Die Kunststoffbauteile haben sowohl strukturelle, als auch warme- und geräuschdämmende Funktion. Während in konventionellen Fahrzeugen Einscheiben-Sicherheits- und Verbundglas eingesetzt wird, erfolgt im BOmobil soweit möglich die Verwendung von Kunststoffscheiben. Zur Kostenreduktion werden für das Fahrwerk Standardkomponenten des OPEL Zafira verwendet.

1 2 3