Strahlung ist eine Energieform, die sich als elektromagnetische Welle- oder als Teilchenstrom durch Raum und Materie ausbreitet. Die Strahlungsarten werden in 2 große Gruppen unterteilt, die sich durch ihre Energie unterscheiden. Strahlung, die bei der Durchdringung von Stoffen an Atomen und Molekülen Ionisationsvorgänge auslöst, wird als ionisierende Strahlung bezeichnet. Dazu gehören z.B. die Röntgen- und die Gammastrahlung. Als nichtionisierende Strahlung wird die Strahlung bezeichnet, bei der die Energie der Strahlung nicht ausreicht, Atome und Moleküle zu ionisieren. Dazu gehören z.B. Radio- und Mikrowellen, elektromagnetische Felder und das Licht. Ionisierende Strahlung ist sowohl Teil der Natur (Natürliche Radioaktivität) und somit Bestandteil der menschlichen Umwelt als auch das Resultat menschlicher Tätigkeit (Künstliche Radioaktivität).
Personen, die ionisierender Strahlung (Röntgen-, Gamma-, Beta- oder Neutronenstrahlung) ausgesetzt sein können, müssen entsprechend §§ 64, 65 der Strahlenschutzverordnung hinsichtlich der von ihnen empfangenen Körperdosis an radioaktiver Strahlung überwacht werden. In Berlin ermittelt die amtlich bestimmte Personendosismessstelle der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt mit Hilfe von Dosimetern die Personendosis bei äußerer Strahlenexposition. Es werden etwa 17.000 Personen aus ungefähr 930 Betrieben in der Regel monatlich überwacht, woraus sich jährlich ca. 200.000 Ermittlungen ergeben. Für die Messung sind amtliche Personendosimeter erforderlich. Diese werden auf Anforderung in regelmäßigen Abständen von meist einem Monat ausgegeben und ausgewertet. Die Dosimeter der Messstelle für Berlin unterliegen rigorosen Zulassungsbedingungen und erfüllen alle Qualitätsanforderungen. Die Dosimeter sind an einer für die Strahlenexposition repräsentativen Stelle der Körperoberfläche zu tragen, bei Ganzkörperdosimetern ist dieses in der Regel die Vorderseite des Rumpfes. Da es auch vorkommt, dass nur einzelne Körperbereiche der Strahlung ausgesetzt sind, gibt es sogenannte Teilkörperdosimeter (Fingerring-, Augenlinsendosimeter) – die Dosimetersonde muss grundsätzlich an der Stelle getragen werden, an der die Strahlung einwirken kann. Die Bestimmung der Personendosis dient der Kontrolle der Einhaltung der Grenzwerte der Körperdosis. Die Ergebnisse der Auswertung der Personendosimeter gehen an den Auftraggeber sowie an das Strahlenschutzregister. Die Personendosismessstelle Berlin bietet als Ganzkörperdosimeter das OSL-Dosimeter an ( siehe Erklärfilm OSL-Dosimeter ), das hervorragend in Anwendungsbereichen von Röntgen- und Gammastrahlung einsetzbar ist und einen sehr großen Energiebereich abdeckt, sowie das Albedo-Dosimeter, welches verwendet werden sollte, wenn Neutronen-Strahlung auftreten kann. Als Teilkörperdosimeter werden Einmal-Kunststoff-Fingerringe mit einem Thermolumineszenz-Dosimeter angeboten, welche für Beta- bzw. für gemischte Beta-Photonen-Strahlungsfelder geeignet sind, sowie das Augenlinsendosimeter (ALD) auf Basis der OSL-Technologie. Die verantwortlichen Strahlenschutzbeauftragten der Betriebe können in der Messstelle die für zu überwachende Personen erforderlichen Personendosimeter bestellen. Als nichtkommerzielle Messstelle der Öffentlichen Hand gehören umfassende Beratung und Service für kleine und große Kundenbetriebe zu unserem Qualitätsverständnis. Wir beraten Sie auch gerne persönlich. Empfehlungen zum Strahlenschutz bei der Radiosynoviorthese Strahlenschutz beim Umgang mit Betastrahlern in der Nuklearmedizin einschließlich der Positronen-Emissions-Tomografie Empfehlungen zum Strahlenschutz bei der Radioimmuntherapie
Elektromagnetische Felder und Licht sind Bestandteile des elektromagnetischen Spektrums. Das elektromagnetische Spektrum gliedert sich grob in zwei Bereiche – die nichtionisierenden Strahlung und die ionisierenden Strahlung. Zum Bereich der nichtionisierenden Strahlung gehören die niederfrequenten (elektrischen und magnetischen) Felder, die hochfrequenten (elektromagnetischen) Felder und die optische Strahlung mit der Infrarotstrahlung, dem sichtbaren Licht und der Ultraviolettstrahlung (weitere Informationen: Bundesamt für Strahlenschutz ). Der Bereich der ionisierenden Strahlung umfasst unter anderem die Röntgen- und Gammastrahlung. Technisch erzeugte elektrische, magnetische und elektromagnetische Felder (oder künstliches Licht) können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG) darstellen. Bild: lumendigital/Depositphotos.com Elektromagnetische Felder Elektromagnetische Felder begleiten uns täglich im Arbeits- und Privatbereich. Technisch erzeugte elektrische, magnetische oder elektromagnetische Felder können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes darstellen. Weitere Informationen Bild: SenMVKU Licht Erhebliche Lichtemissionen, die störende Blendwirkungen oder unzulässige Raumaufhellungen erzeugen, sind von Anlagen ausgehende Einwirkungen auf die Umwelt, für die im Landes-Immissionsschutzgesetz Berlin allgemeine Vermeidbarkeits- und Minderungskriterien formuliert sind. Weitere Informationen
Dieser Datensatz wurde aus diversen BGR-Befliegungsprojekten in Deutschland zusammengestellt. Die Messgebiete ergänzen den Datensatz zu den Gebieten an der deutschen Nordseeküste. Der BGR-Messhubschrauber (Sikorsky S-76B) wird zur aerogeophysikalischen Erkundung des Erduntergrundes eingesetzt. Das Standardmesssystem umfasst die Methoden Elektromagnetik, Magnetik und Radiometrie. Das passive Radiometriemesssystem (HRD) ist im Messhubschrauber eingebaut und besteht aus einem Gammastrahlenspektrometer mit fünf Natriumiodid-Detektoren zur Erfassung der Gammastrahlung. Die Ergebnisse werden als Karten der Totalstrahlung, Ionendosisleistung sowie (Äquivalent-)Gehalte von Kalium, Thorium und Uran am Boden dargestellt.
Anwendungslabor für Künstliche Intelligenz und Big Data am UBA Das Anwendungslabor für Künstliche Intelligenz und Big Data (KI-Lab) am Umweltbundesamt macht Methoden von KI und Big Data für Umwelt- und Nachhaltigkeitsanwendungen nutzbar. Als Innovations- und Experimentierraum für das Umweltressort fokussiert es den Mehrwert von KI für Mensch und Umwelt und forscht zur nachhaltigen Nutzung und Betrieb von KI- und Big Data-Anwendungen. Das KI-Lab am Umweltbundesamt Das KI-Lab mit 32 Mitarbeitenden nutzt KI und Big Data für Umwelt- und Nachhaltigkeitsanwendungen. Es dient als Innovations- und Experimentierraum für Behörden des BMUV , um den Mehrwert von KI für Mensch und Umwelt zu zeigen und Forschungsfragen zur nachhaltigen und verantwortungsvollen Nutzung von KI zu bearbeiten. Ziel ist es, KI als Schlüsseltechnologie nicht nur für die Industrie, sondern auch für Politik und Forschung insbesondere im Bereich des Umwelt- und Klimaschutzes zu erschließen. Das KI-Lab entwickelt Anwendungen, welche die vielfältigen Aufgaben des Umweltressorts unterstützen – von Arten- bis Strahlenschutz, von nuklearer Sicherheit bis zur Klimawandelanpassung und Umweltmonitoring. Erste umgesetzte Beispiele von KI-Anwendungen sind etwa das Identifizieren von Windkraftanlagen in Satellitendaten für eine bessere Planung der Energiewende, das Aufspüren auf Online-Handelsplattformen angebotener geschützter Tierarten oder die Gefahrgutüberwachung und Gefahrenabwehr durch Identifikation radioaktiver Nuklide mittels Analyse von Gammaspektren. Im externen Link öffnet sich die Webseite des BMUV mit dem Impressions-Film von der Eröffnung des KI-Labs in Dessau am 13.10.2023. Impressions-Film der KI-Lab-Eröffnung Unsere Handlungsfelder Prototypisierung und Beratung Das KI-Lab entwickelt Anwendungen und begleitet den gesamten Prozess von der Idee bis zur Umsetzung. Quelle: Stephan Klingner / KI-Lab am UBA Das KI-Lab entwickelt Anwendungen und begleitet den gesamten Prozess von der Idee bis zur Umsetzung. Kompetenzaufbau Das KI-Lab bietet Schulungen zu Daten und KI an. Auf Anfrage werden spezifische Formate entwickelt. Quelle: Stephan Klingner / KI-Lab am UBA Das KI-Lab bietet Schulungen zu Daten und KI an. Auf Anfrage werden spezifische Formate entwickelt. Vernetzung und Kollaboration Das KI-Lab ist zentraler Akteur für nationale und internationale Netzwerke zu KI im Umweltressort. Quelle: Stephan Klingner / KI-Lab am UBA Das KI-Lab ist zentraler Akteur für nationale und internationale Netzwerke zu KI im Umweltressort. Organisationsentwicklung Das KI-Lab strebt ein agiles Mindset mit einem interdisziplinären Team im Behördenumfeld an. Quelle: Claudius Wehner / KI-Lab am UBA Das KI-Lab strebt ein agiles Mindset mit einem interdisziplinären Team im Behördenumfeld an. Forschung Das KI-Lab nutzt Forschungsergebnisse und betreibt eigene Forschung für nachhaltige, ethische KI. Quelle: scharfsinn86 für Adobestock Das KI-Lab nutzt Forschungsergebnisse und betreibt eigene Forschung für nachhaltige, ethische KI. IT-Infrastruktur Das KI-Lab baut eine IT-Infrastruktur für Entwicklung von KI-Anwendungen im Behördenkontext auf. Quelle: Stephan Klingner / KI-Lab am UBA Das KI-Lab baut eine IT-Infrastruktur für Entwicklung von KI-Anwendungen im Behördenkontext auf. Der Weg zu den Anwendungen (Use Cases) Um Ideen und Bedarfe für KI- und datenbasierte Anwendungen in den Fachabteilungen zu identifizieren, für eine Bearbeitung durch das KI-Lab aufzubereiten und für eine Prototypisierung zu priorisieren, wurde der behördenübergreifende Prozess der sogenannten Use Case Discovery entworfen. Als zyklischer Ablauf strukturiert die Use Case Discovery die Zusammenarbeit des KI-Labs und der Fachseite der Behörden im Umweltressort. Sie gewährleistet eine effiziente Ressourcennutzung im KI-Lab und stellt Transparenz sowie Vergleichbarkeit zwischen den unterschiedlichen Anwendungsfällen her. Aktuelle Use Cases Das Internet durchsuchen – für die Bewahrung der Artenvielfalt Dieser Use Case setzt ein KI-gestütztes Analysetool um, welches das Auffinden potentiell illegaler Verkaufsanzeigen geschützter Tierarten auf gängigen Onlinehandelsplattformen erleichtert, indem Angebote erfasst sowie nach bestimmten Kriterien gefiltert und analysiert werden. Quelle: Foto von David Courbit (https://unsplash.com/de/@jetlag) auf Unsplash Dieser Use Case setzt ein KI-gestütztes Analysetool um, welches das Auffinden potentiell illegaler Verkaufsanzeigen geschützter Tierarten auf gängigen Onlinehandelsplattformen erleichtert, indem Angebote erfasst sowie nach bestimmten Kriterien gefiltert und analysiert werden. Objekterkennung automatisieren – für eine erfolgreiche Energiewende Dieser Use Case ermöglicht die automatische Detektion und geographische Verortung von Windenergie- und Freiflächen-PV-Anlagen im Bundesgebiet mithilfe von Satellitenbildern. Weiterhin sollen automatisiert Informationen zu Anlagenparametern abgeschätzt werden. Quelle: Stephan Klingner / KI-Lab am UBA Dieser Use Case ermöglicht die automatische Detektion und geographische Verortung von Windenergie- und Freiflächen-PV-Anlagen im Bundesgebiet mithilfe von Satellitenbildern. Weiterhin sollen automatisiert Informationen zu Anlagenparametern abgeschätzt werden. Gammaspektren analysieren – für den Schutz vor Radioaktivität Dieser Use Case unterstützt die Datenauswertung zur nuklearen Gefahrenabwehr. Radioaktive Stoffe emittieren Gammastrahlung, die in Spektren erfasst werden kann. Diese werden durch KI entrauscht und Elementen zugeordnet, was den Prozess schneller und zuverlässiger macht. Quelle: KI-Lab / Umweltbundesamt Dieser Use Case unterstützt die Datenauswertung zur nuklearen Gefahrenabwehr. Radioaktive Stoffe emittieren Gammastrahlung, die in Spektren erfasst werden kann. Diese werden durch KI entrauscht und Elementen zugeordnet, was den Prozess schneller und zuverlässiger macht. Bürger*innen-Kommunikation gestalten – für einen leistungsfähigen Staat Das KI-Lab berät und unterstützt in diesem Use Case bei der Einrichtung eines verantwortungsvollen Chatbots für die Krisenkommunikation in radiologischen Bedrohungslagen. Dieser soll sichere und informative Antworten auf Bürger*innen-Fragen liefern, die Hotline entlasten und bei Bedarf auf menschliche Ansprechpartner*innen verweisen. Quelle: KI-Lab / Umweltbundesamt Das KI-Lab berät und unterstützt in diesem Use Case bei der Einrichtung eines verantwortungsvollen Chatbots für die Krisenkommunikation in radiologischen Bedrohungslagen. Dieser soll sichere und informative Antworten auf Bürger*innen-Fragen liefern, die Hotline entlasten und bei Bedarf auf menschliche Ansprechpartner*innen verweisen. Interdisziplinäre Zusammenarbeit Die Use Cases erfordern eine enge Zusammenarbeit und einen intensiven Austausch zwischen dem KI-Lab und den Fachabteilungen der verschiedenen Behörden. Der Erfolg eines Projekts hängt von beiden Beteiligten gleichermaßen ab. Die Fachseite profitiert vielfältig von dieser Zusammenarbeit, z.B. durch Kompetenzvermittlung, die Begleitung von Ausschreibungen oder die Umsetzung von Software. Der geschaffene Mehrwert lässt sich demnach am besten über die Wahrnehmung auf der Fachseite illustrieren. „ Mit geballter interdisziplinärer Expertise hilft uns das KI-Lab, ein lange erhofftes Projekt endlich in die Tat umzusetzen. “ Wissenschaftliche Referentin, Bundesamt für Strahlenschutz „ Das KI-Lab erarbeitet Skripte, mit Hilfe derer ich die statistischen Zusammenhänge zwischen Luftschadstoffen und meteorologischen Variablen besser untersuchen kann. Weil es zwischen der Quelle eines Luftschadstoffs und dem Einwirken auf die Menschen eine Vielzahl verschiedenster Umwandlungs- und Transportprozesse gibt, bin ich sehr froh über die methodische Unterstützung und Beratung. “ Technische Angestellte, Umweltbundesamt „ Die wertvollen Anregungen und Erfahrungen aus den kooperativen Workshops des Labors unterstützen bereits jetzt aktiv unsere internen Projektentwicklungsprozesse, auch über unsere gemeinsamen Use-Cases hinaus. Wir freuen uns auf die bevorstehenden ersten Prototypen und die weitere Zusammenarbeit. “ Fachgebietsleiter, Bundesamt für Naturschutz „ Signifikante Zeitersparnis! Für das BfN relevante KI-Entwicklungen können auf kurzem Wege prototypisch entwickelt und auf ihre Nutzbarkeit hin getestet werden. Aufwendige Forschungsprojekte mit langen Laufzeiten und Anbahnungsphasen können so im KI-Umfeld reduziert werden. “ Digitalstratege, Bundesamt für Naturschutz Responsible AI Das KI-Lab hat sich einer verantwortungsbewussten, wertebasierten Softwareentwicklung verschrieben, die Mensch und Umwelt sowie mögliche Implikationen und Wechselwirkungen berücksichtigt. So werden neben der technologischen Machbarkeit auch potentielle Auswirkungen eines Entwicklungsvorhabens auf sozio-ökologische Aspekte betrachtet. Alle Anwendungsfälle werden in dieser Hinsicht analysiert, mit dem Verständnis von Ethik als Prozess und nicht als Checkliste, d.h. alltagstaugliche Ethik wird in der täglichen Arbeit mitgedacht. Das KI-Lab legt besonderen Wert auf den verantwortungsvollen Umgang mit Daten und entwickelt Lösungen zur ressourcenschonenden Nutzung von KI und Big Data (Responsible & Green AI). Dabei stehen verschiedene Aspekte nachhaltiger Software im Raum: Vom möglichst energieeffizienten Einsatz der Hardware, über passgenaue und ethische Auswahl der Daten und Algorithmen, einer Verbesserung der Energieeffizienz bestehender KI-Modelle, bis zur Verwertbarkeit durch Dritte im Rahmen von Open Source. Politischer Rahmen Das KI-Lab ist eine Initiative im Rahmen der Umweltpolitischen Digitalagenda des BMUV und Teil des BMUV 5-Punkte-Programms „Künstliche Intelligenz für Umwelt und Klima“ . Hierfür stehen aus Mitteln des Konjunktur- und Zukunftspaketes der Bundesregierung (2021) 26,4 Millionen Euro zur Verfügung. Es werden rund 30 Mitarbeitende, zunächst befristet bis 2025, an den Standorten Leipzig, Berlin und Dessau-Roßlau beschäftigt. Zu dem interdisziplinären Team gehören u.a. Expert*innen aus den Bereichen Projektmanagement, Data Science, Data Engineering, High Performance Computing, KI-Ethik, Remote Sensing, User Experience und Interface Design. Das KI-Lab ist als Maßnahme in der Fortschreibung der KI-Strategie 2020 , der Datenstrategie der Bundesregierung 2021 und als Meilenstein im Deutschen Aufbau- und Resilienzplan (DARP) verankert.
Bergbauliche Hinterlassenschaften mit erhöhter natürlicher Radioaktivität Überreste aus dem Bergbau und der Erzverarbeitung können natürliche radioaktive Anteile enthalten und bei ihrer Freisetzung Mensch und Umwelt unerwünscht beeinflussen. In Sachsen, Thüringen und Sachsen-Anhalt betrifft dies die Rückstände des mittelalterlichen Bergbaus und insbesondere des Uranerzbergbaus. Die bergbaulichen Hinterlassenschaften wurden in einem großen Projekt untersucht und die Folgen der Umweltradioaktivität eingeschätzt. Da die abgebauten Erze häufig eine hohe Uranmineralisation aufwiesen, liegen in den Rückständen des Bergbaus (Berge- oder Haldenmaterial) und besonders in den Aufbereitungsrückständen (zum Beispiel Tailings, Schlacken) so hohe Gehalte an Radionukliden der Uran -Radium-Zerfallsreihe vor, dass diese Hinterlassenschaften aus der Sicht des Strahlenschutzes beachtet werden müssen. Äußere und innere Strahlenbelastung Die wichtigsten Expositionspfade, durch die die Bevölkerung in den Bergbaugebieten eine Strahlenbelastung erfahren kann, sind: die äußere Strahlenbelastung durch Gammastrahlung beim Aufenthalt auf bergbaulich beeinflussten Flächen (Materialablagerungen) oder in unmittelbarer Nähe von Bergbauanlagen (Halden und so weiter) und die innere Strahlenbelastung durch Ingestion (Nahrungsaufnahme) von Trinkwasser sowie von landwirtschaftlich oder gärtnerisch erzeugten Produkten und Pilzen, Ingestion von kontaminiertem Staub und Boden durch spielende Kinder, Inhalation (Einatmen) von kontaminiertem Staub und Inhalation von Radon . Für die Strahlenbelastung der Bevölkerung ist dabei von besonderer Bedeutung, dass Rückstände des Bergbaus und der Erzaufbereitung (zum Beispiel Haldenmaterialien, Schlacken) häufig zur Geländeauffüllung, zum Straßenbau, aber auch zum Hausbau verwendet wurde. Regionale Schwerpunkte Infolge der geologischen Bedingungen liegt der Schwerpunkt der bergbaulichen Hinterlassenschaften mit erhöhter natürlicher Radioaktivität in Sachsen, Sachsen-Anhalt und Thüringen, da dort der Bergbau und die Gewinnung von Silber, Zinn, Kupfer und anderen Metallen seit dem Mittelalter ein bedeutender Wirtschaftsfaktor war. Nach dem Zweiten Weltkrieg kam die Urangewinnung durch die SAG/SDAG (Sowjetische Aktiengesellschaft/Sowjetisch-Deutsche Aktiengesellschaft) Wismut hinzu, die zeitweise weltweit an dritter Stelle lag. Altlastenkataster Von 1991 bis 1999 hat das BfS das Projekt "Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten (Altlastenkataster)" durchgeführt und folgte damit dem damaligen gesetzlichen Auftrag zur Ermittlung der aus bergbaulicher Tätigkeit in Gegenwart natürlicher Radioaktivität stammenden Umweltradioaktivität in den neuen Bundesländern. Wie die in der folgenden Tabelle zusammengestellten Ergebnisse des Projektes "Altlastenkataster" zeigen, wurden in den Ländern Sachsen, Sachsen-Anhalt und Thüringen infolge des Bergbaus insgesamt zirka 20 Millionen Kubikmeter Schlacken, zirka 130 Millionen Kubikmeter Haldenmaterial und zirka 30 Millionen Kubikmeter Aufbereitungsrückstände auf Hinterlassenschaften abgelagert, die als "radiologisch relevant" bewertet werden müssen. Überblick über Anzahl und Fläche der bergbaulichen Hinterlassenschaften in Sachsen, Sachsen-Anhalt und Thüringen und die Menge der abgelagerten Rückstände Parameter Klasse A1 "radiologisch nicht relevant" und "uneingeschränkt nutzbar" Klasse A2 "radiologisch nicht relevant" und "weiter zu beobachten" Klasse B "radiologisch relevant" Anzahl der Hinterlassenschaften 437 2.553 820 Fläche in Hektar 289 255 2.280 Volumen in Millionen Kubikmeter 24 5,7 184 Die Identifikation der radiologisch relevanten Flächen und Hinterlassenschaften ist jedoch nicht gleichbedeutend mit einem Entscheid über die Notwendigkeit von Sanierungsmaßnahmen, da derartige Entscheidungen nur auf der Grundlage von fall- und standortspezifischen Untersuchungen getroffen werden können. Für die alten Bundesländer liegen keine Untersuchungen in vergleichbarer Qualität wie das "Altlastenkataster" vor. Repräsentative Erhebungen, die zur Bewertung der radiologischen Bedeutung bergbaulicher Hinterlassenschaften herangezogen werden können, gibt es für Bayern, Baden-Württemberg und Niedersachsen. Wie eine Abschätzung des BfS gezeigt hat, dürften in den alten Bundesländern nur etwa eine Million Kubikmeter radiologisch relevante Rückstände des Bergbaus lagern. Einige dieser Hinterlassenschaften wurden in der Vergangenheit bereits untersucht und zum Teil saniert. Stand: 20.03.2025
Gesundheitliche Folgen des Unfalls von Tschornobyl in der ehemaligen Sowjetunion Durch den Reaktorunfall von Tschornobyl (russ.: Tschernobyl) erhielten insbesondere Notfallhelfer*innen und Aufräumarbeiter*innen (sogenannte Liquidator*innen) hohe Strahlendosen. Auch die Bevölkerung in der Nähe war z.T. einer hohen Strahlendosis ausgesetzt. 28 Notfallhelfer*innen starben in Folge eines akuten Strahlensyndroms. Ein Anstieg von Schilddrüsenkrebserkrankungen ist auf die Strahlung zurückzuführen. Die gesundheitlichen Folgen werden bis heute untersucht. Blumen am Denkmal für die Feuerwehrleute von Tschornobyl Die gesundheitlichen Folgen des Reaktorunglücks von Tschornobyl wurden in zahlreichen Publikationen untersucht. Wichtige Zusammenfassungen dieser Erkenntnisse liefern u.a. die Berichte vom Wissenschaftlichen Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen (United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR ) und des Tschernobyl-Forums . Das Tschernobyl-Forum war eine Arbeitsgruppe der Internationalen Atomenergie-Organisation (International Atomic Energy Agency, IAEA ), der Weltgesundheitsorganisation (World Health Organisation, WHO ), mehrerer UN -Organisationen und der Regierungen von Russland, Belarus und der Ukraine, die zwischen 2003 und 2005 die wissenschaftliche Aufarbeitung der Folgen des Reaktorunfalls für Mensch und Umwelt vorantrieb. Bei der Untersuchung werden oftmals folgende Personengruppen unterschieden: Notfallhelfer*innen und Liquidator*innen Am Tag des Reaktorunfalls, dem 26. April 1986, waren rund 600 Notfallhelfer*innen ( z. B. Werksangehörige, Feuerwehrleute und Rettungskräfte) an dem Kraftwerk tätig. In den Jahren 1986 und 1987 waren über 240.000 Personen als Aufräumarbeiter*innen (sogenannte Liquidator*innen) im Umkreis von 30 Kilometern um das Kraftwerk eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Die Gesamtzahl der für den Einsatz registrierten Liquidator*innen betrug etwa 600.000. Bevölkerung 1986 wurden etwa 116.000 Bewohner*innen aus der unmittelbaren Umgebung des Unfallreaktors evakuiert (im Umkreis von 30 Kilometern um das Kraftwerk und in weiteren Gebieten mit gemessenen Ortsdosisleistungen von mehr als 0,2 Millisievert pro Stunde). In den Folgejahren waren es zusätzlich etwa 220.000 Personen. Im Jahr 2006 lebten noch etwa 6 Millionen Menschen in den "kontaminierten Gebieten". Als "kontaminiert" gelten dabei die Gebiete der ehemaligen Sowjetunion, die am Boden Cäsium-137 -Konzentrationen von mehr als 37.000 Becquerel pro Quadratmeter aufwiesen. Auch die damals in der Ukraine, Belarus und in den 19 "betroffenen Oblasten" (Verwaltungsbezirke) in Russland lebenden 98 Millionen Menschen wurden bei der Untersuchung der gesundheitlichen Folgen betrachtet. Als "betroffen" gelten dabei die Oblaste von Russland, die kontaminierte Gebiete enthielten. Akute gesundheitliche Folgen Zwei Werksmitarbeiter starben unmittelbar an den schweren Verletzungen durch die Explosion des Reaktors. 134 Notfallhelfer*innen erlitten ein akutes Strahlensyndrom . Davon starben 28 innerhalb von vier Monaten nach dem Unfall. Ihr Tod ist auf die hohen Strahlendosen zurückzuführen. Weitere 19 Personen mit einem akuten Strahlensyndrom starben in den Folgejahren (1987 - 2004). Ihr Tod steht möglicherweise auch im Zusammenhang mit den Strahlendosen nach dem Unfall. Für die Überlebenden des akuten Strahlensyndroms sind Hautverletzungen und später auftretende, strahleninduzierte Katarakte , also eine Trübung der Augenlinse oder Grauer Star, die schwerwiegendsten gesundheitlichen Schäden. Die 134 Personen mit akutem Strahlensyndrom erhielten Ganzkörperdosen durch externe Gammastrahlung von 0,8 bis 16 Gray . Manche erhielten zudem durch Betastrahlung Hautdosen von 400 bis 500 Gray , die zu schweren Verbrennungen führten. Die meisten der Verstorbenen starben an Infektionen infolge der Verbrennungen. 13 Personen mit einem akuten Strahlensyndrom wurden mit einer Knochenmarktransplantation behandelt. Nur einer der behandelten Personen überlebte. Bei den Liquidator*innen und in der Bevölkerung wurden nach den vorliegenden Berichten keine akuten Strahlenschäden beobachtet. Später auftretende gesundheitliche Folgen In Folge des Reaktorunfalls erhielten die Liquidator*innen und die im Umkreis lebende Bevölkerung erhöhte Strahlendosen, die zu später auftretenden Strahlenschäden geführt haben können bzw. in Zukunft immer noch führen können. Die Höhe der Strahlendosen kann sich stark unterscheiden: Liquidator*innen erhielten in Folge ihrer Aufräumarbeiten im Zeitraum von 1986 bis 1990 im Mittel eine zusätzliche effektive Dosis von 120 Millisievert . Die Dosiswerte variierten von weniger als 10 bis mehr als 1000 Millisievert . Für 85% von ihnen lag sie im Bereich von 20 bis 500 Millisievert . Evakuierten Personen erhielten im Mittel eine zusätzliche effektive Dosis von 33 Millisievert . 6 Millionen Menschen in den kontaminierten Gebieten erhielten im Zeitraum von 1986 bis 2005 eine effektive Dosis von durchschnittlich 9 Millisievert . Bei 70% der Menschen lag die zusätzliche effektive Dosis unter 1 Millisievert , bei 20% zwischen 1 und 2 Millisievert , bei 2,5% lag die effektive Dosis über 50 Millisievert . 98 Millionen Menschen auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland erhielten im Mittel eine vergleichsweise geringe zusätzlich effektive Dosis (im Zeitraum von1986 bis 2005) von insgesamt 1,3 Millisievert . Zum Vergleich: Auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland wurde für denselben Zeitraum eine Hintergrundstrahlung von 50 Millisievert geschätzt. Die ermittelten zusätzlichen effektiven Dosen stellen damit in Teilen eine deutliche Erhöhung gegenüber der Hintergrundstrahlung dar. Wie viele Menschen wegen der erhöhten Strahlendosen in Folge des Reaktorunfalls erkrankten oder starben, lässt sich nicht genau angeben. Das Tschernobyl-Forum schätzte 2005, dass ungefähr 4.000 Todesfälle auf die zusätzlichen Strahlendosen zurückzuführen sind. Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 10.02.2025
Inkorporationsmessstelle München Das Bundesamt für Strahlenschutz betreibt an seiner Dienststelle München in Neuherberg eine Inkorporationsmessstelle zur Bestimmung radioaktiver Stoffe im menschlichen Körper. Es können nur Radionuklide bestimmt werden, die Gammastrahlung aussenden. Wesentliche Aufgabe der Inkorporationsmessstelle ist die Überwachung von Personen, die mit höheren Aktivitäten offener radioaktiver Stoffe umgehen, wobei die Gefahr einer Inkorporation dieser Stoffe besteht. Außerdem steht die Messstelle für Notfälle, also z.B. nach einem Strahlenunfall, zur Verfügung. Die Inkorporationsmessstelle München ist eine nach § 169 Strahlenschutzgesetz behördlich bestimmte Messstelle für das Land Bayern. Das Bundesamt für Strahlenschutz betreibt an seiner Dienststelle München in Neuherberg eine Inkorporationsmessstelle zur Bestimmung radioaktiver Stoffe im menschlichen Körper. Durch eine direkte Messung am Menschen, eine sogenannte In-vivo-Messung, können radioaktive Stoffe nachgewiesen werden, die in den Körper aufgenommen (inkorporiert) wurden. Es können aber nur Radionuklide bestimmt werden, die Gammastrahlung aussenden. Wesentliche Aufgabe der Inkorporationsmessstelle ist die Überwachung von Personen, die mit höheren Aktivitäten offener radioaktiver Stoffe umgehen, wobei die Gefahr einer Inkorporation dieser Stoffe besteht. Außerdem steht die Messstelle für Notfälle, also z.B. nach einem Strahlenunfall, zur Verfügung. Die Inkorporationsmessstelle München ist eine nach § 169 Strahlenschutzgesetz behördlich bestimmte Messstelle für das Land Bayern. Information für Strahlenschutzverantwortliche Bitte nehmen Sie mit uns Kontakt auf, wenn Beschäftigte in Ihrem Betrieb wegen eines regelmäßigen oder einmaligen Umgangs mit hohen Aktivitäten offener radioaktiver Stoffe auf Inkorporationen überwacht werden sollen. Wir beraten Sie dazu, welche Messverfahren für die bei Ihnen vorkommenden Radionuklide geeignet sind, welche behördlich bestimmten Inkorporationsmessstellen ebenfalls für Ihre Anforderungen geeignet wären und wie häufig Ihre Mitarbeitenden zur Messung erscheinen sollen. Art und Weise der Inkorporationsüberwachung beruflich strahlenexponierter Personen sind in der Richtlinie für die physikalische Strahlenschutzkontrolle, Teil 2 (2007) , geregelt. Beachten Sie bitte, dass für die Messungen Gebühren erhoben werden. Information für zu untersuchende Personen Wenn für Sie ein Termin mit der Inkorporationsmessstelle vereinbart worden ist, erscheinen Sie bitte rechtzeitig und nehmen Sie sich etwa 30 Minuten Zeit. Bitte beachten Sie, dass eine Messung nur nach vorheriger Terminvereinbarung möglich ist. Unsere Mitarbeitenden werden Sie zunächst über den Ablauf der Messung in der Inkorporationsmessstelle informieren. Nach der Erhebung Ihrer persönlichen Daten werden wir zuerst etwaige äußere Kontaminationen messen. Darauf folgt die eigentliche Inkorporationsmessung: Während der 20-minütigen Messung liegen Sie auf einer Liege in der Messkammer. Sie können dabei Radio hören oder etwas lesen. Es ist nicht erforderlich, völlig still zu liegen. Die Messung wird deshalb von den meisten Personen als sehr angenehm empfunden. Anschließend werden Sie sofort über das festgestellte Ergebnis informiert. Die in der Inkorporationsmessstelle eingesetzten Messgeräte zeichnen die Strahlung, die von natürlichen und etwaigen künstlichen Radionukliden im Körper ausgeht, auf. Sie senden selbst keine ionisierende Strahlung aus. Blick in die Messkammer der Ganzkörper-Messanlage Beschreibung der Messanlagen Die Ganzkörper-Messanlage Die Ganzkörpermessanlage besteht im Wesentlichen aus einer massiven Abschirmkammer, einer darin befindlichen Liege sowie vier um die Liege angeordneten, elektrisch gekühlten Reinstgermanium-Detektoren zum Nachweis von Gammastrahlung . Bei einer Inkorporationsmessung werden die in den Detektoren erzeugten Impulse gezählt und gleichzeitig wird ihre Energie gemessen. Anhand der Energie der einzelnen Messimpulse lässt sich bestimmen, um welches Radionuklid , also zum Beispiel Kalium-40 oder Caesium-137 , es sich handelt. Daraus lässt sich berechnen, welche Aktivität des jeweiligen Radionuklids im Körper der gemessenen Person enthalten ist. In der Ganzkörpermessanlage werden radioaktive Stoffe nachgewiesen, die sich eher im ganzen Körper als in bestimmten Organen verteilen. Die Ganzkörper-Messanlage ist mit ihrem Qualitätsmanagementsystem gemäß DIN EN ISO/IEC 17025 akkreditiert. Die Teilkörper-Messanlage an der Dienststelle München Die Teilkörper-Messanlage Die Teilkörper-Messanlage wurde für den Nachweis niederenergetischer Gammastrahler in der Lunge konzipiert und ist mit vier Reinstgermanium-Detektoren bestückt. Das Messprinzip ist das gleiche wie bei der Ganzkörper-Messanlage. Allerdings sind hier die Detektoren senkrecht von oben auf die mittleren Lagen des rechten und des linken Lungenflügels, der Leber und der Milz ausgerichtet. Die Liege kann in der Höhe verstellt werden, um den Abstand zwischen dem Körper und den Detektoren zu optimieren. Die Anlage eignet sich auch für den Nachweis niederenergetischer Gammastrahler (vor allem Americium-241 und Blei-210) im Skelett über die Messung der Aktivität im Schädel. Die Messung im Schädel ist in diesen Fällen günstiger als die in anderen Knochen, da der Schädel nicht von Muskelgewebe überdeckt ist, das sonst einen Großteil der niederenergetischen Gammastrahlung absorbieren würde. Messungen radioaktiver Iod- Isotope in der Schilddrüse sind in der Teilkörper-Messanlage ebenfalls möglich. Weitere Messeinrichtungen Die Inkorporationsmessstelle verfügt über ein tragbares Gammaspektrometrie-System mit einem elektrisch gekühlten Reinstgermanium-Detektor. Mit diesem Gerät können In-vivo-Messungen an Personen vor Ort durchgeführt werden. Diese Messungen sind allerdings wesentlich weniger empfindlich als die mit den oben beschriebenen Anlagen und vor allem für den Notfallschutz gedacht. Weiterhin verfügt die Messstelle über ein für den Nachweis von Iod-131 in der Schilddrüse optimiertes Dosisleistungsmessgerät. Iod-131 besitzt eine große Bedeutung bei Freisetzungen von radioaktiven Stoffen aus kerntechnischen Anlagen. Mit dem Gerät ist es möglich, die gesamte Gammastrahlung an der Schilddrüse Nuklid -unspezifisch zu messen. Personen, bei denen auf diese Weise eine große Aktivität von Iod-131 in der Schilddrüse abgeschätzt wird, können im Ganz- oder Teilkörperzähler genauer untersucht werden. Ein stationäres Gammaspektrometrie-System für die Messung von radioaktiven Quellen ist ebenfalls vorhanden. Damit können ergänzende Messungen, zum Beispiel bei einer möglichen Kontamination an der Bekleidung einer von uns gemessenen Person, durchgeführt werden. Stand: 05.11.2024
Radioaktivität messen Auch wenn ionisierende Strahlung nicht zu sehen, hören, fühlen oder schmecken ist, gibt es Methoden und Geräte, um sie zu messen. Je nach Art der Strahlung und Messaufgabe sind unterschiedliche Geräte erforderlich. Im Vergleich zu professionellen Messgeräten, wie sie das Bundesamt für Strahlenschutz nutzt, messen einfache Geräte für den Privatgebrauch oft ungenauer und weniger zuverlässig. Verschiedene Faktoren nehmen Einfluss auf die Güte von Messergebnissen und müssen bei der Auswertung von Messergebnissen beachtet werden. Was ist ionisierende Strahlung? Messverfahren Messgeräte Einflussfaktoren und Aussagekraft der Messergebnisse Professionelle Radioaktivitäts-Messungen Messwerte online einsehen Radioaktivitäts-Messwerte einordnen und bewerten Messgeräte zur Messung von Radioaktivität in der Umwelt " Radioaktivität " beschreibt ein physikalisches Naturphänomen: Können Atomkerne ohne äußere Einwirkung von selbst zerfallen und dabei energiereiche Strahlung ( ionisierende Strahlung ) aussenden, nennt man sie "radioaktiv". Natürliche Radioaktivität ist überall in der Umwelt anzutreffen, und niemand kann sich ihr entziehen. Von künstlicher Radioaktivität spricht man, wenn radioaktive Atomkerne zum Beispiel durch Kernspaltung oder Neutronenaktivierung künstlich erzeugt werden. Die beim radioaktiven Zerfall entstehende ionisierende Strahlung ist nicht zu sehen, zu hören, zu fühlen oder zu schmecken. Es gibt jedoch Methoden und Geräte, um sie zu messen. Was ist ionisierende Strahlung? Ionisierende Strahlung entsteht, wenn bestimmte Atomkerne radioaktiv zerfallen und dabei Alpha-, Beta-, Gamma- und/oder Neutronen - Strahlung abgeben. Ionisierende Strahlung kann aber auch technisch erzeugt werden. Das ist bei Röntgen-Strahlung der Fall. Trifft ionisierende Strahlung auf Atome oder Moleküle, kann sie diese "ionisieren". Ionisierung bedeutet: Elektronen werden aus der Hülle von Atomen beziehungsweise Molekülen "herausgeschlagen". Das zurückbleibende Atom oder Molekül ist dann (zumindest kurzzeitig) elektrisch positiv geladen. Elektrisch geladene Teilchen nennt man Ionen. Zerfallen Atomkerne, geben sie häufig – abhängig davon, um welche Atomkerne es sich handelt - Alpha- Strahlung in Form ausgestoßener Helium-Atomkerne oder Beta- Strahlung in Form von aus dem Atomkern ausgestoßenen Elektronen oder Positronen ab. Meist tritt zeitgleich mit der Alpha- oder Beta- Strahlung auch sehr kurzwellige und energiereiche Gamma- Strahlung auf. Dringt ionisierende Strahlung in menschliches Gewebe ein , kann sie Zellen im Gewebe schädigen . Während Alpha- Strahlung schon durch wenige Zentimeter Luft absorbiert wird und die menschliche Haut nicht durchdringen kann, durchdringt Beta- Strahlung die Luft bis zu einigen Metern und kann durch die menschliche Haut wenige Millimeter bis Zentimeter in den menschlichen Körper gelangen. Gamma- Strahlung und Neutronen - Strahlung durchdringen sehr leicht verschiedenste Materie. Maßeinheiten Messverfahren Da man ionisierende Strahlung nicht direkt beobachten kann, muss man geeignete Messverfahren verwenden, um die Art und Intensität der Strahlung zu ermitteln. Je nach Art der Strahlung (Alpha-, Beta- und Neutronen - Strahlung oder Röntgen- und Gamma- Strahlung ) sind unterschiedliche Messverfahren erforderlich. Das bedeutet, dass man nicht mit einem einzigen Verfahren alle durch den radioaktiven Zerfall entstehenden Strahlungsarten messen kann. Auch der Messzweck spielt eine wichtige Rolle. Soll zum Beispiel neben der Intensität der Strahlung auch die Art des radioaktiven Stoffes bestimmt werden, sind unterschiedliche Messverfahren notwendig. Physikalische Wechselwirkungen der Strahlung mit Materie Alle Verfahren zur Messung ionisierender Strahlung basieren auf physikalischen Wechselwirkungen der Strahlung mit Materie. Dabei wird Energie von der Strahlung auf das verwendete Detektormaterial übertragen, was je nach verwendetem Detektor zu verschiedenen Effekten führt, die dann gemessen und zum Beispiel per Anzeige auf einem Display sichtbar und/oder durch Knackgeräusche in einem Lautsprecher hörbar gemacht werden können. Messgeräte Die Messverfahren werden in unterschiedlichen Messgeräten eingesetzt, wie zum Beispiel Geiger-Müller-Zählern (umgangssprachlich "Geigerzähler"), Halbleiterdetektoren, Szintillationszählern und passiven Detektoren/Filmdosimetern: Geiger-Müller-Zähler Halbleiterdetektoren Szintillationszähler Passive Messgeräte Geiger-Müller-Zähler Geiger-Müller-Zähler Eine Sonde zur Messung der Gamma-Orts-Dosis-Leistung (ODL) mit zwei Geiger-Müller-Zählrohren für unterschiedliche Messbereiche. Geiger-Müller-Zähler nutzen den photoelektrischen Effekt, bei dem ionisierende Strahlung elektrisch geladene Teilchen im Messgerät freisetzt, die verstärkt und registriert werden können. Bei Geiger-Müller-Zählern befindet sich Gas in einem Metallrohr, dem so genannten Zählrohr, an das eine elektrische Spannung angelegt ist. Kommt das Gas im Zählrohr mit ionisierender Strahlung in Kontakt, entstehen im Gas elektrisch geladene Teilchen, die durch die angelegte Spannung beschleunigt und vervielfacht werden. Dadurch entsteht eine "Lawine" von geladenen Teilchen, die als elektrisches Signal (Strom) gemessen werden kann. Durch einen akustischen Verstärker, der im Messgerät mit verbaut sein kann, kann ein Geräusch (Ticken/Knacken) erzeugt und/oder durch das Umrechnen der Signale in Messeinheiten kann ein Messwert am Gerät abgelesen werden. Halbleiterdetektoren Halbleiterdetektoren Mit einem mobilen Halbleiterdetektor, der einen Reinstgermanium-Kristall als Detektormaterial verwendet, lässt sich Gamma-Strahlung messen. Bestimmte feste Materialien, so genannte Halbleiter, können zum Nachweis ionisierender Strahlung verwendet werden. Das Prinzip ähnelt dem in Geiger-Müller-Zählern verwendeten Effekt: In Halbleiterdetektoren entstehen durch den Kontakt mit ionisierender Strahlung elektrisch geladene Teilchen. Diese erzeugen ein elektrisches Signal, mit dessen Hilfe die Strahlung messbar gemacht wird. Zusätzlich zur Intensität der Strahlung kann dabei auch deren Energie bestimmt werden. Szintillationszähler Szintillationszähler Szintillationsdetektoren für die Messung von Gamma-Strahlung gibt es in unterschiedlichen Ausführungen auch für mobile Mess-Einsätze. In bestimmten Materialien, so genannten Szintillatoren, kann die ionisierende Strahlung optische Effekte wie zum Beispiel Lichtblitze verursachen. Diesen Lumineszenz-Effekt, bei dem ionisierende Strahlung bestimmte Stoffe zum Leuchten anregt, nutzt man in Szintillationszählern zum Nachweis von Strahlung , indem man die optischen Effekte direkt beobachtet oder mittels eines Lichtverstärkers und eines optischen Sensors messbar macht. Das abgegebene Licht wird als Signal erfasst und in einem Messwert am Gerät dargestellt. Wie mit Halbleiterdetektoren kann auch mit Szintillationszählern unter bestimmten Umständen zusätzlich zur Intensität der Strahlung die Energie der einfallenden Teilchen bzw. Gammastrahlung bestimmt werden. Passive Messgeräte Passive (Radon-)Messgeräte, Filmdosimeter Passive Messgeräte nutzen zum Beispiel Photoemulsions-Effekte als Messverfahren. Hier hinterlässt ionisierende Strahlung dunkle Spuren auf einer dünnen, lichtempfindlichen Schicht im Messgerät. In der Regel werden solche Messgeräte für einen bestimmten Messzeitraum an einem Ort aufgestellt wie zum Beispiel passive Radon -Messgeräte oder von einer Person mitgeführt wie zum Beispiel tragbare Filmdosimeter. Nach Ende des Messzeitraums werden die Detektoren im Labor ausgewertet, indem die von einfallenden Teilchen auf der lichtempfindlichen Schicht im Messgerät erzeugten Spuren ausgezählt werden. Die erhaltene Dosis wird bei diesem Messverfahren also im Nachhinein erfasst. Je nach Art und Intensität der Strahlung sind die hier genannten Messgeräte unterschiedlich gut zum Nachweis der jeweiligen Strahlungsart geeignet: So können Szintillationsmesssonden sehr viel geringere Aktivitäten oder Dosisleistungen messen als zum Beispiel ein Geiger-Müller-Zähler. Mögliche Rückschlüsse Auch wenn Messgeräte mit verschiedenen Arten von Detektoren bestückt sein und so verschiedene Messverfahren parallel nutzen können, ist es grundsätzlich nicht möglich, aus dem Ergebnis einer einzigen Messung einer bestimmten Strahlungsart Rückschlüsse auf die "Gesamt- Strahlung " an einem Ort zu ziehen. Unter bestimmten Voraussetzungen können jedoch Rückschlüsse auf das vorhandene radioaktive Material gezogen werden, die wiederum eine Einschätzung der "Gesamt- Strahlung " ermöglichen: Wird an einem Ort eine Messung durchgeführt, bei der nicht nur die Intensität , sondern auch die Energie der vorhandenen (Gamma-) Strahlung bestimmt wird, können damit unter Umständen die vorhandenen radioaktiven Stoffe identifiziert und deren Menge bestimmt werden. Dies ermöglicht dann Aussagen zur Gesamtstrahlung. Einflussfaktoren und Aussagekraft der Messergebnisse Qualifizierte Aussagen zu Radioaktivitäts-Messergebnissen sind nur von Fachleuten mit entsprechender professioneller Ausstattung möglich. Im Strahlenschutz werden üblicherweise höherwertige Messgeräte eingesetzt, welche geeicht sind und einer regelmäßigen Qualitätskontrolle und Kalibrierung unterliegen. Einflussfaktoren, die Fachleute bei Auswahl und Bewertung berücksichtigen, sind zum Beispiel die Eignung des Messgerätes für die Messaufgabe: Liefert das Messgerät für die zu ermittelnde Strahlungsart zuverlässige Ergebnisse, ist das Ansprechvermögen ausreichend? die Rahmenbedingungen der Messungen: Welche Aspekte müssen bei der Bewertung der Messergebnisse berücksichtigt werden? Welchen Einfluss haben die Messgeometrie, also der Abstand zum Messort und eine eventuell vorhandene Abschirmung ? Ein Vergleich von Messergebnissen ist nur möglich, wenn am selben Ort, in der gleichen Messgeometrie und mit einem vergleichbaren Messgerät gemessen wird. Aussagekraft von Messungen mit handelsüblichen, einfachen Geräten begrenzt Ein qualifiziertes, zuverlässiges und belastbares Messergebnis kann durch private Messungen in der Regel nicht erbracht werden, da die Aussagekraft von Messungen mit handelsüblichen, einfachen Geräten begrenzt ist. Private Messungen mit einfachen Messgeräten können maximal einen groben Anhaltspunkt geben. Die Gründe dafür sind vielfältig: In der Regel erfolgt keine kontinuierliche Kalibrierung und/oder Eichung der handelsüblichen, einfachen Geräte. Liegt eine Kalibrierung vor, ist sie meistens auf ein bestimmtes Radionuklid bezogen – das bedeutet, dass die Kalibrierung nur für eine spezielle Messaufgabe wie zum Beispiel die Detektion von Cäsium-137 gilt. Günstige Geiger-Müller-Zähler sind häufig nicht für alle Messsituationen geeignet, daher kann es gerade in niedrigeren Dosisbereichen zu Abweichungen der gemessenen Werte von den Werten teurer professioneller Geräte kommen. Bei der ungeübten Nutzung unbekannter Detektoren kann es leicht zu Bedienungsfehlern oder dem Einsatz von für die zu messende Strahlung ungeeigneten Messgeräten kommen – etwa, wenn Geräte für die zu ermittelnde Strahlungsart nicht geeignet sind oder die messbare Dosisleistung außerhalb des Messbereiches des Gerätes liegt. Handelsübliche, einfache Geräte sind oft anfällig für äußere Einflüsse wie zum Beispiel Temperaturschwankungen, Luftfeuchtigkeit oder elektromagnetische Felder. Die Messwerte privater Messungen mit einfachen Messgeräten lassen sich nur dann sinnvoll beurteilen, wenn Vergleichswerte vorliegen. Das bedeutet, dass zuvor mit demselben Messgerät bei gleichen äußeren Einflüssen und gleichen Messabständen eine Messung des "normalen" Hintergrundwertes durchgeführt wurde, mit dem man die neu ermittelten Messwerte vergleichen kann. Da eine Messung aller Strahlungsarten in der Regel nicht über ein einziges Messgerät erfolgen kann, sind Messungen mit einem einzigen Messgerät fast immer unvollständig. Hinweise und Empfehlungen Das Bundesamt für Strahlenschutz ( BfS ) kann keine Empfehlung für spezielle Messgeräte oder Anbieter aussprechen. Das BfS empfiehlt jedoch, bei Überlegungen zur Anschaffung eines Messgerätes verschiedene Aspekte zu berücksichtigen: So sollte der Messbereich des Messgerätes nach unten bis etwa 0,1 Mikrosievert pro Stunde reichen, da dies in etwa der natürlichen Umgebungsstrahlung entspricht. Zudem ist eine Anzeige der Dosisleistung in Mikrosievert pro Stunde sinnvoll, da man damit die Ergebnisse einfacher miteinander und mit Grenzwerten vergleichen kann. Zu beachten ist aber auch, dass die Qualität der verwendeten Komponenten und das Know-how des Herstellers eine Rolle spielen. Daher messen günstige Geräte oft nicht so genau und zuverlässig. So sind Geiger-Müller-Zähler für den privaten Gebrauch oft deutlich günstiger in der Anschaffung als professionelle Geräte, weil sie im Gegensatz zu diesen meist weder geeicht noch eichfähig sind. Professionelle Radioaktivitäts-Messungen Insgesamt wird die Umwelt in Deutschland engmaschig auf Radioaktivität überwacht. Dabei sind für verschiedene Umweltbereiche verschiedene Institutionen zuständig: Auf Bundesebene messen neben dem BfS zum Beispiel der Deutsche Wetterdienst ( DWD ), das Thünen Institut , die Bundesanstalt für Gewässerkunde ( BfG ), das Bundesamt für Seeschifffahrt und Hydrographie ( BSH ) sowie das Max-Rubner-Institut ( MRI ). Zusätzlich gibt es Messstellen der Bundesländer; und auch die Betreiber von Anlagen, in denen mit radioaktiven Stoffen umgegangen wird, betreiben Radioaktivitäts-Messstellen. Das BfS ist zudem an internationalen Messnetzen beteiligt bzw. beteiligt sich an internationalen Datenplattformen . Messungen des BfS https://odlinfo.bfs.de informiert über Radioaktivitätsmesswerte in Deutschland Das BfS misst Radioaktivität mithilfe vieler verschiedener Messverfahren und entsprechend ausgerüsteter Labore und Messgeräte. Beispiele sind das aus rund 1.700 über Deutschland verteilten Messsonden bestehende ODL -Messnetz , das routinemäßig die natürliche Strahlenbelastung misst – rund um die Uhr an 365 Tagen im Jahr, In-situ-Messungen mittels mobiler Germanium-Gammaspektrometer, Aerogamma-Messungen mit hubschraubergestützten Messsystemen in Zusammenarbeit mit der Bundespolizei, hochempfindliche Messeinrichtungen zur Spurenanalyse zum Beispiel in der BfS -Messstation auf dem Schauinsland bei Freiburg, die geringste Spuren radioaktiver Stoffe in der Luft detektieren können ( Spurenanalyse ), Labore zur Analyse von Radionukliden in verschiedenen Medien , die ionisierende Strahlung zum Beispiel in Wasser, Boden, Luft und Lebensmitteln bestimmen können. Die notwendigen Messgeräte zur Messung von Alpha-, Beta-, Gamma- und Neutronen - Strahlung sind in verschiedenen Ausführungen im BfS vorhanden und unterliegen regelmäßigem Qualitätsmanagement durch Kalibrierung und Eichung. So sichert zum Beispiel ein durch die Deutsche Akkreditierungsstelle (DAkkS) akkreditiertes Radon-Kalibrierlaboratorium des BfS die Qualität von Messungen von Radon - und Radon -Folgeprodukten. Messwerte online einsehen Das BfS-Geoportal Qualifizierte Radioaktivitäts-Messwerte stellen das BfS und andere Institutionen online bereit: Das ODL-Messnetz des BfS mit seiner wichtigen Frühwarnfunktion, um erhöhte Strahlung durch radioaktive Stoffe in der Luft in Deutschland schnell zu erkennen, stellt seine Messwerte unter https://odlinfo.bfs.de rund um die Uhr online bereit. Im Falle der Ausbreitung einer radioaktiven Schadstoffwolke könnten diese nahezu in Echtzeit verfolgt werden – eine wesentliche Voraussetzung, um kurzfristig gezielte Maßnahmen zum Schutz der Bevölkerung einzuleiten. Im BfS -Geoportal stellt das BfS nicht nur eigene Messdaten, sondern auch Messdaten von Bundes-, Landes- und anderen Partnerbehörden bereit. Dies sind in der Mehrzahl Daten aus dem Integrierten Mess- und Informationssystem ( IMIS ). Messwerte der Ortsdosisleistung aus den Mitgliedsstaaten der Europäischen Union ( EU ) veröffentlicht das Joint Research Centre (JRC) der EU gesammelt. Auch Citizen Science Netzwerke wie zum Beispiel SAFECAST stellen Messwerte online bereit – die Werte sind nicht qualitätsgesichert, können jedoch grobe Anhaltspunkte liefern, ob etwa Radioaktivitäts-Messwerte aktuell steigende oder fallende Tendenzen haben. Verschiedene rückblickende Berichte über Umweltradioaktivität und Strahlenbelastung ergänzen die aktuellen, online verfügbaren Messwerte: Neben der Veröffentlichung eigener Berichte unterstützt das BfS auch das Bundesumweltministerium bei dessen nationalen und internationalen Berichtspflichten . Radioaktivitäts-Messwerte einordnen und bewerten Es kommt in unserer natürlichen Umgebung jederzeit zu radioaktiven Zerfällen und entsprechend zur Aufnahme radioaktiver Dosen. Diese natürlich vorkommende Radioaktivität ist kaum beeinflussbar. Beeinflussbar - und damit durch Grenzwerte regulierbar - ist dagegen die (künstliche) Strahlenbelastung durch technische Anlagen. Vergleichswerte Strahlung aus natürlich und zivilisatorisch bedingten Strahlenquellen ist jeder Mensch ausgesetzt. Der natürliche Strahlungshintergrund liegt in Deutschland je nach Region zwischen 0,6 Millisievert pro Jahr in der norddeutschen Tiefebene und mehr als 1,2 Millisievert pro Jahr in den Mittelgebirgen. Auch aus dem Weltall erreicht uns ionisierende Strahlung - in Form von kosmischer Strahlung . Auf Meereshöhe entspricht diese Strahlung etwa 0,3 Millisievert pro Jahr, doch schon in der Flughöhe von Flugzeugen in etwa zehn Kilometern Höhe ist die kosmische Äquivalenzdosisleistung etwa einhundert Mal so groß. Die gesamte natürliche Strahlenexposition in Deutschland oder genauer die effektive Dosis einer Einzelperson in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr. Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von 1 Millisievert bis zu 10 Millisievert . Die Strahlenbelastung bei der medizinischen Diagnostik ist besonders bei aufwändigen Röntgenuntersuchungen hoch. Eine einzige Computertomographie kann etwa so viel Strahlenbelastung erzeugen wie die natürliche Strahlenbelastung in 10 bis 50 Jahren. Was bedeutet ein Anstieg von Radioaktivitäts-Messwerten? Radioaktivitäts-Messwerte unterliegen oft natürlich bedingten Schwankungen Grundsätzlich kann ein Anstieg von Messwerten einen Anstieg der Strahlungsintensität bedeuten. Allerdings unterliegen Radioaktivitäts-Messwerte oft natürlichen Schwankungen: Bei aktuellen Messwerten zum Beispiel von Sonden des ODL -Messnetzes können kurzzeitige Erhöhungen der Ortsdosisleistung um das Doppelte bis Dreifache der normalen Werte auftreten. Solche Erhöhungen der Strahlungsintensität können durch unterschiedliche Wettereinflüsse wie etwa Regen oder Wind entstehen und bedeuten keine Gefahr . Ab welchen Messwerten wird es gefährlich? Folgen akuter Strahlenbelastungen Während es bei der langsamen und langfristigen Aufnahme geringer Strahlendosen schwierig ist, genaue Ursache-Wirkung-Beziehungen herzustellen, sind die Effekte bei schweren radiologischen Unfällen mit großer Aufnahme von Strahlung bekannt und gut untersucht. So sind bei der kurzzeitigen Aufnahme einer einmaligen Dosis von wenigen tausend Millisievert ionisierender Strahlung schwere Schädigungen des Gewebes bis hin zum Tod unausweichlich. Eine derartig hohe Dosis kann allerdings nur in radiologischen Ausnahmesituationen mit massiven Freisetzungen von Radioaktivität in unmittelbarer Nähe betroffener Personen oder bei Bestrahlungseinrichtungen erreicht werden. So war es zum Beispiel für das Betriebspersonal und die Feuerwehrleute in der Anfangsphase der Reaktorkatastrophe in Tschornobyl . Im gesetzlichen Regelwerk wie etwa der EU -Vorschrift 96/29/EURATOM und im deutschen Strahlenschutzgesetz sind strenge Grenzwerte für den Umgang mit Radioaktivität und für die Bevölkerung festgelegt: Erwachsene, die durch ihre berufliche Tätigkeit ionisierender Strahlung ausgesetzt sind , dürfen in fünf Jahren nicht mehr als 100 Millisievert aufnehmen, wobei in einem einzelnen Jahr nicht mehr als 50 Millisievert erreicht werden dürfen. Das entspricht etwa dem 20-fachen der natürlichen Strahlenbelastung. Für alle anderen Personen gilt, dass durch technische Anlagen oder künstlich eingebrachte radioaktive Stoffe pro Jahr maximal 1 Millisievert Äquivalenzdosis aufgenommen werden dürfen. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 30.08.2024
Messsysteme In der Frühphase eines radiologischen Notfalls kommen stationäre und quasi-stationäre ODL -Messsysteme zum Einsatz. Später dienen ergänzende Messungen mit mobilen Messsystemen dazu, das Bild der radiologischen Lage zu verfeinern. Insgesamt werden vier unterschiedliche Arten an Messsystemen vorgehalten. Kommt es zu einem radiologischen Störfall , ermitteln in der Frühphase eines solchen Störfalls ausschließlich automatisch arbeitende stationäre und quasi-stationäre Messsysteme die äußere Strahlenbelastung durch kontinuierliche Messung der Gamma-Ortsdosisleistung ( ODL ). Die Messdaten ermöglichen eine erste grobe Dosisabschätzung in den betroffenen Gebieten. Nachdem sich die radiologische Lage stabilisiert hat und keine Freisetzung mehr zu erwarten ist, setzt das BfS ergänzend mobile Messsysteme ein, um das Bild der radiologischen Lage zu verfeinern. Dazu wird zunächst die räumliche Verteilung von radioaktiven Stoffen mit Hilfe von hubschraubergestützten Messungen kartiert. Werden bei der Auswertung Bereiche mit Werten der Gamma-Ortsdosisleistung deutlich oberhalb der natürlichen Umgebungsstrahlung lokalisiert, können diese Gebiete zusätzlich durch fahrzeuggestützte Messungen radiologisch detaillierter untersucht werden. Hierfür werden an sechs Standorten Deutschlands speziell ausgerüstete Fahrzeuge vorgehalten. Ergänzt werden können diese Untersuchungen durch Vor-Ort-Messungen und die Entnahme von Boden- und Pflanzenproben mit anschließender radiochemischer Analyse im Labor. Vier Arten von Messsystemen Insgesamt werden vier unterschiedliche Arten von Messsystemen vorgehalten. ODL-Sonden Hubschrauber-Messsystem Fahrzeug-gestützt Mobile ODL ODL-Sonden Stationäre und quasi-stationäre ODL-Sonden Temporär aufgebaute quasi-stationäre Sonde Das ODL -Messnetz verfügt über ortsfest aufgebaute Sonden mit kabelgebundenen Anschlüssen zur Stromversorgung und zur Datenübertragung. Zusätzlich stehen auch sogenannte quasi-stationäre ODL -Sonden bereit. Es handelt sich dabei um mobile Sonden mit autarker Stromversorgung. Im Ereignisfall kann das Messnetz mit diesen Sonden gezielt in einem möglicherweise betroffenen Gebiet verdichtet werden. Dadurch lassen sich kleinräumigere Bewertungen der radiologischen Lage erstellen. Das Gesamtbild wird genauer. Aufbau und Funktionsweise der Messsonden Die stationären und quasi-stationären ODL -Sonden sind weitgehend baugleich. Sie bestehen aus zwei Geiger-Müller-Zählrohren. Die Zählrohre sind mit Gas gefüllt und befinden sich in einem elektrischen Feld. Schlagen Teilchen durch die Rohrwand, wird ein Spannungsimpuls erzeugt, der dann gezählt wird. Die gasgefüllten Zählrohre sind unterschiedlich groß und ermöglichen so einen extrem weiten Messbereich zwischen etwa 0,04 Mikrosievert pro Stunde und 5 Sievert pro Stunde. Das Niederdosis-Zählrohr Das empfindliche sogenannte Niederdosis-Zählrohr ermöglicht die Bestimmung der ODL im Grundpegelbereich. Das ist der Bereich der natürlichen Umweltradioaktivität, die in Deutschland bzw. Europa typischerweise im Bereich von 0,04 bis 0,25 Mikrosievert pro Stunde liegt. Das Hochdosis-Zählrohr Um auf alle Szenarien vorbereitet zu sein, ermöglicht das zweite sogenannte Hochdosis-Zählrohr die Messungen der ODL bis 5 Sievert pro Stunde. Die von den ODL -Sonden erzeugten Daten ermitteln einen Gesamtwert der Umgebungsradioaktivität, ohne zwischen unterschiedlichen Radionukliden zu unterscheiden. Spektrometrierende ODL -Sonden Eine spektrometrierende ODL-Sonde wird zur energieabhängigen Registrierung der Gamma- und Röntgenstrahlung eingesetzt. Beispielsweise wird bei einem Szintillator-Detektor die Energie der Strahlung in Lichtimpulse umgewandelt. Das Licht wird verstärkt und in ein analoges elektrisches Signal verarbeitet. Das elektrische Signal wird in einen digitalen Wert umgerechnet und weiterverarbeitet. Werden diese Signale über einen längeren Zeitraum – zum Beispiel 30 Minuten - aufgezeichnet, so ergibt sich ein Spektrum. Dieses Spektrum gibt Aufschluss darüber, welche Radionuklide in welcher Intensität beteiligt sind. Hubschrauber-Messsystem Messsysteme im Hubschrauber Reinstgermanium-Detektor (HPGe) Für die Messflüge werden Hubschrauber mit speziellen Einrichtungen zum Aufspüren gammastrahlender Radionuklide ausgerüstet. Detektoren Zum Aufspüren gammastrahlender Radionuklide kommen zwei verschiedene Detektortypen zum Einsatz - zum einen ein hochreiner Germaniumdetektor zur sicheren Identifikation von radioaktiven Stoffen , zum anderen bis zu vier Natriumjodid-Detektoren zum Aufspüren von Strahlenquellen und Strahlungsanomalien sowie zur Bestimmung der Gamma-Ortsdosisleistung . Natriumjodid-Detektor (NaI(Tl)-Detektor) Aufgrund der hohen Empfindlichkeit der Natriumjodid-Detektoren können Spektren schnell aufgenommen und ausgewertet werden. Während eines Messzyklus von einer Sekunde wird bei einer Fluggeschwindigkeit von 100 Kilometern pro Stunde eine Strecke von etwa 28 Metern überflogen. Summenspektren des Germaniumdetektors und eines NaI(Tl)-Detektors vom Messflug "Biblis" Dahingegen können die Messzyklen beim Germaniumdetektor wegen der geringeren Nachweiswahrscheinlichkeit mehrere zehn Sekunden bei der Kartierung der natürlichen Radioaktivität in der Umwelt betragen. Zusätzlich können in den Hubschrauber weitere Messinstrumente eingebaut werden. Derzeit ist zusätzlich ein Gamma-Ortsdosisleistungsmessgerät verbaut. Dadurch kann sich die Hubschrauberbesatzung während des Messfluges jederzeit über die aktuelle Dosisleistung im Hubschrauber bzw. die dort aufgelaufene Dosis informieren. Radiologische Kartierung Neben den Messspektren werden bei jedem Messzyklus auch die Flughöhen anhand des im Hubschrauber eingebauten Radarhöhenmessers und die geographischen Koordinaten (GPS) aufgezeichnet. Diese eindeutige Zuordnung der geographischen Koordinaten zu den Messdaten ermöglicht eine radiologische Kartierung der beflogenen Messgebiete. Mess- und Auswertesoftware Um während des Fluges Daten aufnehmen und anschließend weiter verarbeiten zu können, hat das BfS verschiedene Softwarelösungen entwickelt und nutzt unter anderem die Programme Control Flight Server (CFS), mit dem alle im Messsystem enthaltenen Hardwarekomponenten angesteuert werden können, Programmable Interface for Spectrometry Applications (PISA), das Messungen starten, beenden und eingestellte Messparameter sowie aufgenommene Messdaten visualisieren und speichern kann, sowie Rohflug, dass eine erste detaillierte Auswertung der Messdaten direkt nach der Landung des Hubschraubers ermöglicht. Fahrzeug-gestützt Mobile in-situ Messsysteme HPGe-Detektor Um Radionuklide im Boden in-situ – also vor Ort und ohne Probenahme – nachzuweisen, wird die Art der beim Zerfall der Radionuklide ausgesandten Strahlung analysiert. Diese ist charakteristisch für den jeweiligen Prozess. Die Art der emittierten Teilchen und deren Energie(-verteilung) stellen somit eine Art Fingerabdruck eines Radionuklids dar. In-situ Gammaspektroskopie Für die in-situ Gammaspektroskopie setzt man nahezu ausschließlich Messsysteme ein, deren Kernstück aus einem mit hochreinem Germanium (abgekürzt HPGe nach dem englischen high purity Germanium) gefüllten Detektorkopf besteht. Die Energie der Gammastrahlung wird in elektrische Impulse umgewandelt. Durch einen Vielkanalanalysator wird die Impulshöhe verarbeitet und ein Spektrum erzeugt. HPGe-Detektoren zeichnen sich durch eine sehr gute Energieauflösung aus, die allerdings nur über eine starke Kühlung (circa -196 Grad Celsius) erreicht wird. Durch großvolumige Detektoren und lange Messzeiten können auch sehr geringe Mengen an Radionukliden nachgewiesen werden. Mobile ODL Mobile ODL zur Messung während der Fahrt Sonde für mobile Messungen Für ODL -Messungen während der Fahrt nutzt das BfS ein großvolumiges NBR- (Natural Background Reduction) System. Das System nutzt ein spezielles Verfahren, um zwischen künstlicher und natürlich vorkommender radioaktiver Strahlung zu unterscheiden. Dabei detektiert das System die Gammastrahlung in verschieden Energiebereichen und vergleicht die gemessenen Werte miteinander. Weicht das gemessene Spektrum von dem vorher erlernten natürlichen Spektrum ab, ist dies ein Indiz für künstliche Aktivität . Rucksack-getragene ODL -Messsysteme zur kleinräumigen Kartierung Das mobile Messsystem besteht aus einer eichfähigen Szintillatorsonde in Kombination mit einer GPS-Maus und einem Laptop. An ein vom BfS entwickeltes Programm werden folgende Daten geliefert: die gemessene Ortsdosisleistung (1 Wert pro Sekunde) von der Sonde sowie die geographische Position, die Geschwindigkeit und die geographische Höhe von einer angeschlossenen GPS-Maus. Die Daten können automatisch im Minutentakt über eine Mobilfunkverbindung zu einem der sechs zentralen Datenserver des BfS -Ortsdosisleistungsmessnetzes ( ODL -Messnetz) übertragen und in eine Datenbank eingespeist werden. Die Mitarbeiter vor Ort und in der BfS -Leitstelle können online die Position und die gemessene Ortsdosisleistung der beteiligten Messsysteme beobachten. Bei Bedarf können sie über Handy die Route korrigieren oder kleinräumigere Messungen in einem bestimmten Gebiet anordnen Stand: 14.08.2024
Origin | Count |
---|---|
Bund | 142 |
Land | 21 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Förderprogramm | 91 |
Text | 35 |
unbekannt | 32 |
License | Count |
---|---|
geschlossen | 65 |
offen | 92 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 147 |
Englisch | 18 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 4 |
Datei | 2 |
Dokument | 6 |
Keine | 110 |
Multimedia | 1 |
Webdienst | 2 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 102 |
Lebewesen & Lebensräume | 109 |
Luft | 82 |
Mensch & Umwelt | 159 |
Wasser | 79 |
Weitere | 159 |