Der Online-Katalog umfasst den Bestand von Bibliothek und Archiv: geowissenschaftliche Monographien, Zeitschriften, Aufsätze, Karten sowie unveröffentlichte Archivberichte. Literatur aus der Zeit vor 1990 ist hier noch nicht vollständig nachgewiesen und auch dann nur mit formalen Kriterien (z.B. Titel, Autor, Jahr) suchbar.
Das Projekt "Geodaetische Aspekte der Geodynamik" wird vom Umweltbundesamt gefördert und von Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) durchgeführt. In diesem Arbeitsschwerpunkt sollen globale und regionale Auswirkungen geodynamischer Prozesse, die mit geodaetischen Methoden erfassbar sind, dargestellt und analysiert werden. Dies beinhaltet die Variationen der Erdrotation, gezeitenbedingte Deformationen, globale Plattenbewegungen und regionale Krustendeformationen. Aus geodaetischer Sicht gehoert dazu vor allem die Ableitung zeitabhaengiger Punktkoordinaten aus Laser-Entfernungsmessungen zum Satelliten LAGEOS sowie aus Radiofrequenzmessungen im Global Positioning System (GPS).
Das Projekt "Aufbau einer multifunktionalen GPD-Permanentstation an der TU Dresden" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Geodätisches Institut durchgeführt. Der Betrieb von permanenten Beobachtungsstationen der Satelliten des Global Positioning System (GPS) ist in den unterschiedlichsten Anwendungsbereichen (Landesvermessung, Geodynamik, Navigation) unverzichtbar. Ziel des Vorhabens ist es, Verfahren fuer die Gestaltung und den Betrieb von multifunktionalen GPS-Permanentstationen zu entwickeln.
Das Projekt "Teilprojekt C: Geomechanik von Sedimentbecken" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Petrophysik durchgeführt. Das tektonische Spannungsfeld in der Erdkruste wirkt sich auf eine Vielzahl der Kriterien zur Standortauswahl für die Entsorgung radioaktiver Abfälle aus. Eine verlässliche Prognose im Vorfeld von Erkundungsmaßnahmen wird allerdings dadurch erschwert, dass das Spannungsfeld in seiner Orientierung und Magnitude nicht einheitlich ist. Vielmehr können in Abhängigkeit vom Untergrundaufbau (Lithologien, Störungen) lokal deutliche Abweichungen von der überregional bekannten Spannungsverteilung auftreten. Um ein prozess-basiertes Verständnis dieser räumlichen Variabilität zu erreichen, wird ein geomechanisch-numerisches 3D Spannungsmodell für Deutschland (Dimensionen ca. 1200 x 900 x 80 km3) erstellt. Dieses Modell wird an punktuell gemessenen Spannungsdaten kalibriert und ermöglicht auf Basis kontinuumsmechanischer Ansätze Prognosen für Bereiche ohne Spannungsdaten und die Ableitung aller sechs Komponenten des Spannungstensors. Darüber hinaus werden Modellierungswerkzeuge für räumliche Skalen übergreifende Modelle entwickelt. So wird ein konsistenter Spannungsübertrag zwischen dem Deutschland-Modell und ca. drei Größenordnungen kleineren Teilmodellen ermöglicht. Alle Arbeiten liefern die erforderlichen Grundlagen und Modellierungswerkzeuge für zukünftige geomechanische Standortmodelle. Das Teilprojekt des Karlsruher Instituts für Technologie (KIT) befasst sich mit der Zusammenstellung von Struktur- und geomechanischen Daten des Deckgebirges und besonders von Sedimentbecken. Es werden hauptsächlich post-karbone Ablagerungsräume untersucht. Das Norddeutsche Becken, das Molassebecken und der Rheingraben stehen dabei im Fokus der Untersuchungen. Zunächst werden strukturelle Informationen kompiliert und geomechanisch relevante Parameter wie die mechanischen Gesteinseigenschaften oder die räumliche Verteilung des Porendrucks und der Spannungen zusammengestellt. Die Herausforderung in dem Teil des Forschungsvorhabens ist die Identifizierung der relevanten Informationen und die Vereinfachung der z.B. in Landesämtern bestehenden geologischen Modelle für eine geomechanische Modellierung. Aus den Informationen wird ein Deckgebirgsmodell erstellt, das so aufgesetzt wird, dass es zusammen mit dem Grundgebirgsmodell zu einem kompletten Deutschlandmodell zusammengeführt werden kann. Weiterhin sollen Effekte modelliert werden, welche die Spannungsverteilung im Deckgebirge beeinflussen. Zu diesem Zweck sollen generische Modelle zum lateralen und vertikalen Spannungstransfer erstellt werden.
Das Projekt "Teilprojekt A: 3D-Spannungsmodell und Aufskalierung" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Ingenieurgeologie durchgeführt. Das tektonische Spannungsfeld in der Erdkruste wirkt sich auf eine Vielzahl der Kriterien zur Standortauswahl für die Entsorgung radioaktiver Abfälle aus. Eine verlässliche Prognose im Vorfeld von Erkundungsmaßnahmen wird allerdings dadurch erschwert, dass das Spannungsfeld in seiner Orientierung und Magnitude nicht einheitlich ist. Vielmehr können in Abhängigkeit vom Untergrundaufbau (Lithologien, Störungen) lokal deutliche Abweichungen von der überregional bekannten Spannungsverteilung auftreten. Um ein prozessbasiertes Verständnis dieser räumlichen Variabilität zu erreichen, wird ein geomechanisch-numerisches 3D Spannungsmodell für Deutschland (Dimensionen ca. 1200 x 900 x 80 km3) erstellt. Dieses Modell wird an punktuell gemessenen Spannungsdaten kalibriert und ermöglicht auf Basis kontinuumsmechanischer Ansätze Prognosen für Bereiche ohne Spannungsdaten und die Ableitung aller sechs Komponenten des Spannungstensors. Darüber hinaus werden Modellierungswerkzeuge für räumliche Skalen übergreifende Modelle entwickelt. So wird ein konsistenter Spannungsübertrag zwischen dem Deutschland-Modell und ca. drei Größenordnungen kleineren Teilmodellen ermöglicht. Alle Arbeiten liefern die erforderlichen Grundlagen und Modellierungswerkzeuge für zukünftige geomechanische Standortmodelle.
Das Projekt "Teilprojekt B: Multiskalenansatz" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Das tektonische Spannungsfeld in der Erdkruste wirkt sich auf eine Vielzahl der Kriterien zur Standortauswahl für die Entsorgung radioaktiver Abfälle aus. Eine verlässliche Prognose im Vorfeld von Erkundungsmaßnahmen wird allerdings dadurch erschwert, dass das Spannungsfeld in seiner Orientierung und Magnitude nicht einheitlich ist. Vielmehr können in Abhängigkeit vom Untergrundaufbau (Lithologien, Störungen) lokal deutliche Abweichungen von der überregional bekannten Spannungsverteilung auftreten. Um ein prozess-basiertes Verständnis dieser räumlichen Variabilität zu erreichen, wird ein geomechanisch-numerisches 3D Spannungsmodell für Deutschland (Dimensionen ca. 1200 x 900 x 80 km3) erstellt. Dieses Modell wird an punktuell gemessenen Spannungsdaten kalibriert und ermöglicht auf Basis kontinuumsmechanischer Ansätze Prognosen für Bereiche ohne Spannungsdaten und die Ableitung aller sechs Komponenten des Spannungstensors. Darüber hinaus werden Modellierungswerkzeuge für räumliche Skalen übergreifende Modelle entwickelt. So wird ein konsistenter Spannungsübertrag zwischen dem Deutschland-Modell und ca. drei Größenordnungen kleineren Teilmodellen ermöglicht. Alle Arbeiten liefern die erforderlichen Grundlagen und Modellierungswerkzeuge für zukünftige geomechanische Standortmodelle.
Das Projekt "Integrierte Bestimmung geodynamischer und astronomischer Parameter mit der VLIB" wird vom Umweltbundesamt gefördert und von Technische Universität Wien, Institut für Geodäsie und Geophysik (E128) durchgeführt. Radiointerferometrie auf langen Basislinien (VLBI) ist das einzige Verfahren zur Bestimmung des himmelsfesten Referenzrahmens (CRF), der durch die Positionen von extragalaktischen Radioquellen realisiert wird, und sie ist das wichtigste geodätische Weltraumverfahren, um den vollständigen Satz von Erdorientierungsparametern (EOP) zu beobachten. Nur mit der VLBI lassen sich Weltzeit UT1 und Präzession/Nutation über längere Zeitspannen messen. Die geodätische VLBI trägt außerdem wesentlich zu einem stabilen Maßstab des terrestrischen Referenzrahmens (TRF) bei. Zusätzlich enthalten die VLBI-Beobachtungen Information über eine Vielzahl von geodynamischen, astronomischen und kosmologischen Parametern, die im Rahmen des Projekts Integrierte VLBI bestimmt werden sollen. Die mehr als 30 Jahre langen Beobachtungsserien der geodätischen VLBI erlauben, geodynamische und astronomische Parameter in einem integrierten und konsistenten Ansatz zu bestimmen. In diesem Projekt wird ein neues Softwarepaket, VieVS (Vienna VLBI Software), das an der TU Wien für die Auswertung von Einzelsessions entwickelt wurde, für die Analyse aller existierenden geodätischen VLBI-Daten erweitert. Die sogenannten globalen Lösungen der VLBI bestehen typischerweise aus dem TRF (Stationskoordinaten und Geschwindigkeiten) und dem CRF (Radioquellenkoordinaten). In diesem Projekt bestimmen wir zusätzlich globale geodynamische und astronomische Parameter wie die Periode der Free Core Nutation (FCN), die sowohl in den frequenzabhängigen Deformationen der festen Erde wie auch im Nutationsmodell erscheint. Weitere geodynamische Parameter von Interesse sind komplexe Lovesche und Shidasche Zahlen, welche die Reaktion der anelastischen Erde und ihres Gravitationsfeldes auf die Gezeitenkräfte beschreiben, die durch die größten Körper unseres Sonnensystems verursacht werden. Auch gehen sie in die Modelle der Auflasteffekte atmosphärischer und ozeanischer Massen ein. Diese Effekte verursachen sowohl Stationsverschiebungen wie auch EOP-Variationen, und in beiden Fällen werden die Amplituden und Phasen der Gezeitenwellen bestimmt. Ein (wahres oder scheinbares) Geschwindigkeitsfeld oder eine Mehrpolstruktur in den Zeitserien der geschätzten Quellenkoordinaten im CRF würde es erlauben, Information über astronomische Effekte, wie eine unmodellierte Beschleunigung des Sonnensystems in Richtung des galaktischen Zentrums oder eine Rotation unserer Galaxie in Bezug auf die extragalaktischen Radioquellen, abzuleiten. Außerdem bestimmen wir den Post-Newtonischen Parameter ? im Modell der gravitativen Ablenkung der Radiowellen entsprechend der allgemeinen Relativitätstheorie. Als Vorarbeit wird im Projekt Integrierte VLBI eine sorgfältige Überprüfung aller zur Verfügung stehenden Daten durchgeführt, um Ausreißer aufzudecken und mangelhafte Stationen zu erkennen...
Das Projekt "Geodynamics of North-Victoria-Land, Antarctica, derived from GPS and micro-gravity measurements" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften durchgeführt.
Das Projekt "Plio-Pleistozäne Taleinschneidung in den Ostalpen" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Angewandte Geologie durchgeführt. Das Projekt rekonstruiert die Geschichte der Taleintiefung in den Ostalpen. Informationen über die Taleinschneidung werden in Höhlen gefunden. Der Übergang von der vadosen in die phreatische Zone von Karsthöhlen ist von der Lage der Quelle abhängig. Ein Zusammenhang zwischen Quellen und Talböden entwickelt sich, wenn keine lithologische oder tektonische Inhomogenität vorliegt. Wird das Tal eingetieft, so verlagert sich die Quelle, und die Höhle passt sich den neuen Gegebenheiten an. Die Höhlenmorphologie und die Höhlensedimente zusammen geben Informationen darüber, wann die Höhle phreatisch, aktiv, ersäuft oder sedimentgefüllt war. Eine relative Chronologie von Erosions- und Ablagerungsprozessen wird erstellt und liefert relative Alter der Ablagerungen sowie der Höhlengänge. Höhlensedimente werden mit kosmogenen Nukliden (26Al und 10Be) datiert. Sediment an der Oberfläche wird aus dem Kosmos bestrahlt und produziert kosmogene Nuklide in einem fixen Verhältnis. Wird das Sediment in eine Höhle gewaschen, zerfallen die beiden Isotopen unterschiedlich schnell, und deren Verhältnis ändert sich. Die Messung des Verhältnisses gibt deshalb an, seit wann sich das Sediment im Untergrund befindet. Diese Methode wird Burial Age Dating genannt. Sie liefert absolute Alter bis auf 5 Millionen Jahre zurück und deckt damit das ganze Pliozän und Pleistozän ab. Ausgehend von der dokumentierten Taleinschneidung im Laufe der Zeit können Taleinschneidungsraten abgeleitet werden. Im Projekt werden Höhlen der nördlichen Ostalpen (hauptsächlich in der Region Salzburg) und Höhlen der südlichen Ostalpen (Slowenien) untersucht. Die erhaltenen Daten werden mit anderen Regionen des Alpenbogens verglichen.
Origin | Count |
---|---|
Bund | 11 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 10 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 1 |
offen | 11 |
Language | Count |
---|---|
Deutsch | 10 |
Englisch | 4 |
Resource type | Count |
---|---|
Keine | 9 |
Webseite | 3 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 2 |
Luft | 3 |
Mensch & Umwelt | 11 |
Wasser | 4 |
Weitere | 12 |