Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden hier nicht einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (siehe #1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozess der Steinsalzgewinnung betrachtet. Die weiteren Arbeitsschritte der Aufbereitung für unterschiedliche Nutzungen und die Salinensalzgewinnung werden hier nicht betrachtet. Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozessbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs werden in GEMIS die Staubemissionen bei der Förderung und Verladung des Steinsalzes bilanziert. Sie werden nach Angaben eines deutschen Herstellers mit 4 kg/t Steinsalz quantifiziert (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozeßwasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Die Differenz von 4 kg/t Produkt fällt als Staub an, der vor allem beim Verladen des Salzes entsteht (#1). In dem Prozeß der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in GEMIS nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (#1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozess der Steinsalzgewinnung betrachtet. Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozessbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs entstehen bei Förderung und Verladung des Steinsalzes nach Angaben eines deutschen Herstellers 4 kg Staub pro t Steinsalz (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozesswasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Im Prozess der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in GEMIS nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (#1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozess der Steinsalzgewinnung betrachtet. Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozessbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs entstehen bei Förderung und Verladung des Steinsalzes nach Angaben eines deutschen Herstellers 4 kg Staub pro t Steinsalz (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozesswasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Im Prozess der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in GEMIS nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (#1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozess der Steinsalzgewinnung betrachtet. Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozessbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs entstehen bei Förderung und Verladung des Steinsalzes nach Angaben eines deutschen Herstellers 4 kg Staub pro t Steinsalz (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozesswasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Im Prozess der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in GEMIS nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (#1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozess der Steinsalzgewinnung betrachtet. Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozessbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs entstehen bei Förderung und Verladung des Steinsalzes nach Angaben eines deutschen Herstellers 4 kg Staub pro t Steinsalz (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozesswasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Im Prozess der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in dieser Studie nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (siehe #1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozeß der Steinsalzgewinnung betrachtet. Die weiteren Arbeitsschritte der Aufbereitung für unterschiedliche Nutzungen und die Salinensalzgewinnung werden im Rahmen der vorliegenden Prozeßeinheit nicht betrachtet. Da der Bilanzrahmen in der vorliegenden Literatur nicht deutlich definiert und beschrieben ist, können diese Daten in GEMIS nicht weiter berücksichtigt werden (#2+#3). Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozeßbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs werden in der vorliegenden Studie die Staubemissionen bei der Förderung und Verladung des Steinsalzes bilanziert. Sie werden nach Angaben eines deutschen Herstellers mit 4 kg/t Steinsalz quantifiziert (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozeßwasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Die Differenz von 4 kg/t Produkt fällt als Staub an, der vor allem beim Verladen des Salzes entsteht (#1). In dem Prozeß der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Die Förderung von Steinsalz meint die bergmännische Gewinnung von Natriumchlorid. Teilweise werden schon bei der Gewinnung Reinheitsgrade um die 99% erzielt. Es werden aber auch Steinsalze mit einem Salz-Gehalt von nur 95 bis 98 % gefördert. Der Rest besteht aus Tonen, Anhydrit, Quarz, Dolomit, Feldspat und Glimmer. In diesem Fall muß das Salz durch Sieben und Schwerflüssigkeitstrennung aufkonzentriert werden (Büchner 1984). Diese Prozesse werden in dieser Studie nicht in die Genese der Stoffflußkennziffern einbezogen. Bei der Datengenese konnte auf Primärdaten deutscher Hersteller zurückgegriffen werden (siehe #1). Die Daten gelten für den Bezugsraum der Bundesrepublik für 1994. Es wird nur der Grundprozeß der Steinsalzgewinnung betrachtet. Die weiteren Arbeitsschritte der Aufbereitung für unterschiedliche Nutzungen und die Salinensalzgewinnung werden im Rahmen der vorliegenden Prozeßeinheit nicht betrachtet. Da der Bilanzrahmen in der vorliegenden Literatur nicht deutlich definiert und beschrieben ist, können diese Daten in GEMIS nicht weiter berücksichtigt werden (#2+#3). Allokation: keine Genese der Kennziffern Massenbilanz: Nach Angaben deutscher Hersteller (#1) müssen pro Tonne Steinsalz ca. 1005 kg abgebaut werden. Dies gilt für ein Salz mit einem NaCl-Gehalt von ca. 99 %. Als Betriebsstoffe wird hier der Sprengstoff zum Abbau des Steinsalzes betrachtet. Zum Sprengen einer Tonne Steinsalz sind umgerechnet 0,4 MJ erforderlich. Das entspricht einer Masse von 0,36 kg Sprengstoff bezogen auf eine Tonne Steinsalz. Energiebedarf: Der Energiebedarf der Förderung wird über verschiedene Energiträger gedeckt. In der folgenden Tabelle ist der Energiebedarf gegliedert nach Energieträgern aufgeführt: Tab.: Energiebedarf der Steinsalzförderung aufgegliedert nach Energieträgern (#1) Energieeinsatz Menge in MJ/t Steinsalz Erdgas 3,3 Diesel-Kraftstoff 13,7 Strom 57,6 Summe 74,6 Prozeßbedingte Luftemissionen: Zusätzlich zu den Emissionen aus der Bereitstellung des Energiebedarfs werden in der vorliegenden Studie die Staubemissionen bei der Förderung und Verladung des Steinsalzes bilanziert. Sie werden nach Angaben eines deutschen Herstellers mit 4 kg/t Steinsalz quantifiziert (#1), hier aber NICHT berücksichtigt, da es sich überwiegend um Grobstaub handelt. Wasserinanspruchnahme: Nach Angaben deutscher Hersteller (#1) werden bezogen auf die Tonne Steinsalz 33 l Prozeßwasser benötigt. Es wird vorwiegend eingesetzt, um sowohl unter Tage als auch beim Verladen des Steinsalzes die Staubbildung zu mindern. Das Wasser wird im Produkt aufgenommen. Die Differenz von 4 kg/t Produkt fällt als Staub an, der vor allem beim Verladen des Salzes entsteht (#1). In dem Prozeß der bergmännischen Steinsalz-Gewinnung wird kein Kühlwasser benötigt. Abwasserinhaltsstoffe: Bei der Förderung des Steinsalzes fällt kein Abwasser an. Das eingesetzte Wasser wird vom Produkt aufgenommen. Reststoffe: Als Abfälle bei der bergmännischen Gewinnung des Steinsalzes fällt lediglich eine geringe Menge Schmutzsalz an. Deutsche Hersteller (#1) beziffern diese Menge mit 1 kg/t Produkt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,5% Produkt: Rohstoffe
Systemraum: Gewinnung aus Gestein Geographischer Bezug: Weltmix Zeitlicher Bezug: 2004 Weitere Informationen: als Nebenprodukt von Feldspat-, Kaolin-, Industriesandanreicherung Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Windsichtung Rohstoff-Förderung: USA 31,0% China 26,5% Südkorea 8,6% Norwegen 7,3% Frankreich 5,6% Kanada 4,9% im Jahr 2006 Fördermenge Deutschland: - t im Jahr 2007; Daten vertraulich Importmenge Deutschland: 37143,1 t im Jahr 2007 Abraum: k.A.t/t Fördermenge weltweit: 354384t Reserven: k.A.t Statische Reichweite: k.A.a
technologyComment of kaolin production (RER, RoW): There exist two different processes for the production of market kaolin - a dry and a wet process. The first one - the dry process - is relatively simple but yields therefore also a lower quality product, reflecting the quality found in the crude kaolin. The wet process on the other hand side is used to produce filler and coating grades. It is this process that is modeled in this dataset. The most important four steps of the wet process are the following: - Mining: Nowadays most of kaolin mining is done in open pit mining. Depending on the composi-tion, either mining with shovels, draglines, motorized scrapers and front-end loaders is done (e.g. Georgia, USA) or mining with high-pressure hydraulic monitors (e.g. Cornwall, UK) is done. In the second case, a stream of water is washing out the fine particle kaolin and is leaving the coarse quartz and mica residues within the soil. - Mineral separation (degritting): Kaolin beeing a mineral, it is obvious that there are always also other minerals (the grit) in the kaolin deposits, which have to be separated. To separate two miner-als, either physical or chemical differences between the two substances are taken as base. In gen-eral, the mined kaolin is mixed therefore with water and a dispersing chemical to form a slurry that is then degritted (by e.g. rake classifiers, hydrocyclones or screens). - Kaolin benefication: When the separated kaolin fullfills not the specification asked a benefication process is added to improve e.g. the brightness (either by magnetic separation or by bleaching with ozone or hydrogen peroxide), the rheology (by blending different kaolins), the purity (either by blending or by magnetic separation) or the grain size distribution (again blending as a possibility). In this step, the producer is also deciding the form of delivery (bulk, powder, slurry). - Storage & transport: The storage is done either in silos (bulk and powder) or in tanks (slurries). Due to the fact that customers more and more apply for the 'just in time' principle, the storage ca-pacities of the producers are increasing and the transports are done more and more by lorry to the customer (more flexible than other means of transport). References: Hischier R. (2007) Life Cycle Inventories of Packagings & Graphical Papers. ecoinvent report No. 11. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.
Das Projekt "Teilprojekt: Spaltspuren-Datierung an Kernen der ICDP/CCSD-Donghai-Bohrungen, China" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Geographisches Institut, Professur für Geomorphologie und Bodengeographie durchgeführt. The general aim of the project is to quantify the thermo-tectonic history of the Sulu UHP belt. The ICDP/CCSD-pre-pilot holes (PP1; PP2) and the main ICDP/CCSD-drill hole at Donghai, China, are keyholes that allow the continuous reconstruction of the medium to low temperature history (less than 300 centigrade) by applying fission-track thermochronology. Integration of petrologic and structural data will permit transferring the FT-T-t paths into a post-orogenic exhumation/uplift history. The combination with high temperature geochronometers will extend the thermotectonic history to the orogenic process. The thermochronological data will be compared, integrated in the database of the Qinling-Dabie-Sulu orogen, East-Central China and used to refine the recent thermo-tectonic models. We are the only research group in the German ICDP-program that have access to samples from the ICDP/CCSD Donghai drill holes. In addition, the samples of the drill holes will be used to improve further the standard fission track dating technique. Strong variations in the uranium content of grains from one sample need an improvement of the reproducibility of the automated switching between grain mount and detection mica. Furthermore, the precise measurement of a large number of confined track length, even in low uranium bearing apatites, will allow to better constraint the T-t models.