API src

Found 37 results.

Related terms

Berichte zu Grundwasser und Lysimeter

Institut für Grundwasserökologie IGÖ GmbH im Auftrag des LHW Sachsen-Anhalt: Biomonitoring Nitrat 2024 in Sachsen-Anhalt - Endbericht (2024) mit Steckbriefen download pdf [ca. 4,3 MB] Geo-Dienste GmbH über GEO-data Diensleistungsgesellschaft mbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt - Endbericht zur Messkampagne 2024 (2024) download pdf [ca. 4,4 MB] Geo-Dienste GmbH über GEO-data Diensleistungsgesellschaft mbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt - Endbericht zur Messkampagne 2023 (2023) download pdf [ca. 5,8 MB] Björnsen Beratnde Ingenieure Erfurt GmbH  im Auftrag des LHW Sachsen-Anhalt: Altersbestimmung von Grundwasser durch Tritium/Helium-Methode und hydraulische Altersberechnungen im Jahr 2023 - Erläuterungsbericht (2023) download pdf [ca. 4,3 MB] Institut für Grundwasserökologie IGÖ GmbH im Auftrag des LHW Sachsen-Anhalt: Biomonitoring Nitrat 2023 in Sachsen-Anhalt - Endbericht (2023) mit Steckbriefen download pdf [ca. 7,7 MB] Björnsen Beratnde Ingenieure Erfurt GmbH  im Auftrag des LHW Sachsen-Anhalt: Altersbestimmung von Grundwasser durch Tritium/Helium-Methode und hydraulische Altersberechnungen (2023) download pdf [ca. 3,6 MB] Forschungszentrum Jülich im Auftrag des LHW Sachsen-Anhalt: Fortführung und Weiterentwicklung der Nährstoffmodellierung Sachsen-Anhalt (2023) download pdf [ca. 15,7 MB] Geo-Dienste GmbH über GEO-data Diensleistungsgesellschaft mbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt - Endbericht zur Messkampagne 2022 (2022) download pdf [ca. 4,0 MB] Institut für Grundwasserökologie IGÖ GmbH im Auftrag des LHW Sachsen-Anhalt: Biomonitoring Nitrat 2021-2022 in Sachsen-Anhalt - Endbericht (2022) Textteil [pdf ca. 1,9 MB] Steckbriefe [pdf ca. 3,8 MB] Geo-Dienste GmbH über GEO-data Diensleistungsgesellschaft mbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt - Endbericht zur Messkampagne 2021 (2021) download pdf [ca. 4,1 MB] Rinke (Helmholtz Zentrum für Umweltforschung), Mietz (Institut für angewandte Gewässerökologie GmbH), Schneppmüller (Landesbetrieb für Hochwasserschutz und Wasserwirtschaft); Fachbeitrag aus der Zeitschrift "WASSERWIRTSCHAFT", Ausgabe 11/2021: Auswirkungen der Dürreverhältnisse 2018-2020 auf die Grundwasserstände in Mitteldeutschland download pdf [ca. 2,7 MB] Institut für Grundwasserökologie IGÖ GmbH im Auftrag des LHW Sachsen-Anhalt: Biomonitoring Nitrat 2020 in Sachsen-Anhalt - Endbericht (2020) download pdf [ca. 2,7 MB] INL - Privates Institut für nachhaltige Landbewirtschaftung GmbH im Auftrag des LHW Sachsen-Anhalt: Projektabschlussbericht zum Projekt eines PBSM-Wirkstoffranking Sachsen-Anhalt (2020) download pdf [ca. 2,9 MB] GEO-data Diensleistungsgesellschaft mbH & HYDOR Consult GmbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt (2020) download pdf [ca. 5,4 MB] Geo-Dienste GmbH über GEO-data Diensleistungsgesellschaft mbH im Auftrag des LHW Sachsen-Anhalt: N2/Ar-Untersuchungen im Grundwasser in Sachsen-Anhalt - Endbericht zur Messkampagne 2020 (2021) download pdf [ca. 2,5 MB] Arbeitskreis Grundwasserbeobachtung (Herausgeber): Merkblatt Funktionsprüfung an Grundwassermessstellen (2018) download pdf [ca. 1,6 MB] HYDOR Consult GmbH im Auftrag des LHW Sachsen-Anhalt: Charakterisierung der Milieubedingungen im Grundwasser als Voraussetzung für die Quantifizierung des Nitratabbauvermögens in Sachsen-Anhalt (2017) download pdf [ca. 9,2 MB] Institut für Grundwasserökologie Landau im Auftrag des LHW Sachsen-Anhalt: Monitoring Grundwasserfauna Sachsen-Anhalt 2016 & 2017 - Referenzmonitoring und Biomonitoring Nitrat (2017) download pdf [ca. 2,3 MB] HYDOR Consult GmbH im Auftrag des LHW Sachsen-Anhalt: Geogene Hintergrundwerte für das Grundwasser in Sachsen-Anhalt und Ableitung von Schwellenwerten (2017) zum Bericht hier klicken Forschungszentrum Jülich im Auftrag des LHW Sachsen-Anhalt: Räumlich differenzierte Quantifizierung der Nährstoffeinträge in Grundwasser und Oberflächengewässer in Sachsen-Anhalt unter Anwendung der Modellkombination GROWA-WEKU-MEPhos (2014) zum Bericht hier klicken BTU Cottbus-Senftenberg, Lehrstuhl Umweltgeologie im Auftrag des LHW Sachsen-Anhalt: Genetische Interpretation erhöhter Ammonium-Konzentrationen zur Überprüfung der Grundwassergüte und der Analyse anthropogener und geogener Einflüsse (2015) download pdf [ca. 20 MB] Dr. J. Hagenau im Auftrag des LHW Sachsen-Anhalt: Wasser- und Stoffhaushalt der wägbaren Lysimeterstation Colbitz (2013) download pdf [ca. 4,5 MB] Arbeitskreis Grundwasser (Herausgeber): Merkblatt Bau von Grundwassermessstellen (2012) download pdf [ca. 1,1 MB] LHW Sachsen-Anhalt: Grundwassergütebericht Sachsen-Anhalt (2001 - 2010) Textteil [pdf ca. 9,0 MB] Anlagen [pdf ca. 7,2 MB] Institut für Grundwasserökologie Landau im Auftrag des LHW Sachsen-Anhalt: Erhebung und Bewertung der Grundwasserfauna Sachsen-Anhalts 2012 (2010-2012) download_pdf [ca. 1,4 MB] LHW Sachsen-Anhalt (Herausgeber): Merkblatt Rückbau von Grundwassermessstellen (2010) download pdf [ca. 1,5 MB] Göttelmann+Ross GbR im Auftrag des LHW Sachsen-Anhalt: Projektbericht: Eignungsprüfung zur Auswahl von ungefassten Quellen als Grundwasser-Gütemessstellen (2009) download pdf [ca. 1,2 MB] Göttelmann+Ross GbR im Auftrag des LHW Sachsen-Anhalt: Projektbericht: Probenahme an Stollen - repräsentative Entnahmepnkte und Schwebstoffverhalten (2008) download pdf [ca. 1,9 MB] Göttelmann+Ross GbR im Auftrag des LHW Sachsen-Anhalt: Projektbericht: Probenahme an ungefassten Quellaustritten - Schwebstoffverhalten (2007) download pdf [ca. 0,3 MB] Institut für Grundwasserökologie Landau im Auftrag des LHW Sachsen-Anhalt: Erhebung und Bewertung der Grundwasserfauna Sachsen-Anhalts (2008 - 2009) download pdf [ca. 1,4 MB] LAU Sachsen-Anhalt / LHW Sachsen-Anhalt: Urankonzentrationen im Grundwasser von Sachsen-Anhalt (2002 - 2005) download pdf [ca. 0,6 MB] LHW Sachsen-Anhalt: Grundwassergütebericht Sachsen-Anhalt (1997 - 2001) download pdf [ca, 8,4 MB] Sächsisches Landesamt für Umwelt und Geologie, LHW Sachsen-Anhalt, LAGB Sachsen-Anhalt, UfZ Leipzig-Halle GmbH: Merkblatt Grundwasserprobenahme (2004) download pdf [ca. 2,6 MB]

Messprogramm für hydrologische Extremereignisse Messprogramm Niedrigwasser 2023 Fortschreibung der Modellierung "Nährstoffeinträge in das Grundwasser und Oberflächengewässer in Sachsen-Anhalt" 2023 Sondermessprogramm Bode im Bereich Staßfurt 2019 Messprogramm Niedrigwasser 2019 Messprogramm Niedrigwasser 2018 Monitoring Grundwasserfauna Sachsen-Anhalt 2016 und 2017 Bericht "Nährstoffeinträge in das Grundwasser und Oberflächengewässer in Sachsen-Anhalt" Niedrigwasser 2016 Niedrigwasser 2015 Süßer See - Fischbestandserfassung und limnologisches Gutachten 2013 Studie "Standortbestimmung für eine funktionsfähige Fischaufstiegsanlage im Mündungsbereich der Havel" Auswirkungen des Klimawandels auf das Wasser im Land Sachsen-Anhalt Vernässungsgebiete in Sachsen-Anhalt

Für den deutschen Teil der Elbe und die Hauptnebenflüsse wurde innerhalb der Flussgebietsgemeinschaft Elbe ein Messprogramm für hydrologische Extremereignisse Extremereignisse (Hochwasser / Niedrigwasser) abgestimmt. Die Messstellen in Sachsen-Anhalt werden durch den Gewässerkundlichen Landesdienst untersucht. Aufgrund der anhaltenden Niedrigwassersituation wurde vom 24.07.2023 bis zum 08.08.2023 ein Messprogramm Niedrigwasser durchgeführt. Die Ergebnisse und weitere Informationen finden Sie hier . Die im Jahr 2014 durchgeführte Nährstoffmodellierung für  Sachsen-Anhalt wurde weiterentwickelt und mit aktualisierten Modelleingangsdaten fortgeschrieben. Aufbauend auf der Ist-Zustandsanalyse wurden der regionale N-Reduktionsbedarf zur Erreichung der Schutzziele für das Grundwasser ermittelt. Im Rahmen der Modellierung konnten Belastungsschwerpunkte und damit prioritäre Bereiche für eine Maßnahmendurchführung identifiziert werden. Es wurde eine modellgestützte Analyse von Maßnahmeneffekten für die Schutzziele Grundwasser und Oberflächengewässer vorgenommen. So wurde z.B. ein Szenario zur Auswirkung der novellierten Düngeverordnung auf den diffusen N- Eintrag analysiert und im Bereich der punktuellen Einträge anlagenbezogene Maßnahmen. Den Endbericht (Januar 2023) können Sie durch Anklicken des nachfolgenden Links herunterladen Endbericht Nährstoffmodellierung 2023 [pdf, ca. 15,7 MB] Im Auftrag des Ministeriums für Umwelt, Landwirtschaft und Energie Sachsen-Anhalt hat der Gewässerkundliche Landesdienst im Rahmen eines Sondermessprogramms Messstellen in der Bode untersucht. Hier können Sie die Ergebnisse als pdf-Dokument herunterladen: Sondermessprogramm-Bode (pdf, 0,5 MB) Die Ergebnisse der Abwasseruntersuchungen können Sie als pdf-Dokument hier herunterladen: Sondermessprogramm-Abwasser (pdf, 0,5 MB) Aufgrund der anhaltenden Niedrigwassersituation wurde durch den Gewässerkundlichen Landesdienst seit dem 15.07.2019 in der Elbe und den Hauptnebenflüssen ein Messprogramm Niedrigwasser durchgeführt. Dieses Messprogramm ist innerhalb der Flussgebietsgemeinschaft Elbe abgestimmt. Mehr Informationen Aufgrund der anhaltenden Niedrigwassersituation wurde seit dem 17.07.2018 durch den Gewässerkundlichen Landesdienst ein Messprogramm Niedrigwasser durchgeführt. In Sachsen-Anhalt wurden die Elbe in Wittenberg und Magdeburg, die Mulde in Dessau und die Saale in Groß Rosenburg untersucht. Mit der Probenahme vom 10.12.2018 endete das Messprogramm. Hier erfahren Sie mehr. Basierend auf den im Jahr 2008/2009 vorgenommenen Fauna-Untersuchungen im Grundwasser Sachsen-Anhalts wurde an ausgewählten Messstellen ein jährliches grundwasserfaunistisches Referenzmonitoring durchgeführt. Diese Messstellen sind artenreich und grundwassertypisch besiedelt und repräsentieren gleichzeitig bestimmte Naturräume sowie hydrologische Bezugseinheiten. Neben diesem Referenzmonitoring, d.h. der Erforschung, Beschreibung und Überwachung der Grundwasserlebensgemeinschaften Sachsen-Anhalts, soll das Biomonitoring der längerfristigen Überwachung der Entwicklung diffuser Nitratbelastungen im Grundwasser dienen. Den Abschlussbericht mit den Ergebnissen der Jahre 2016 und 2017 können Sie durch Anklicken des nachfolgenden Links herunterladen: Bericht Monitoring Grundwasserfauna 2016-2017 [pdf, ca. 2,3 MB] In der vorliegenden Studie wurden die Einträge der Nährstoffe Stickstoff und Phosphor sowohl aus Punktquellen als auch aus diffusen Quellen in einer hohen räumlichen Auflösung ermittelt. Hierzu wurden die am FZ Jülich entwickelten Modelle GROWA (Wasserhaushaltsmodell), DENUZ/WEKU (reaktiver Stofftransport in Boden und Grundwasser) und MEPhos (Phosphoreintrag in die Vorfluter) flächendeckend im gesamten Bundesland zur Anwendung gebracht und an die naturräumlichen Bedingungen Sachsen-Anhalts angepasst. Schwerpunkt der Betrachtungen waren die diffusen landwirtschaftlichen und bodenbedingten Quellen, um die räumliche Identifizierung von Belastungsschwerpunkten zu ermöglichen. Den Abschlussbericht können Sie durch Anklicken der nachfolgenden Links herunterladen Bericht - Textteil [pdf, ca. 11 MB] Anhang 1: Modellerläuterung Stoffbilanz (Gesellschaft für angewandte Landschaftsforschung, 2010) [pdf, ca. 1,1 MB] Anhang 2: "Werkzeug zur Modellierung der diffusen N- und P-Emissionen in Sachsen-Anhalt zur Umsetzung des Nährstoffkonzeptes 2010-2013" (Fachinformation der LLFG Sachsen-Anhalt, 2012) [pdf, ca. 2 MB] Aufgrund der Niedrigwassersituation wurde im Zeitraum vom 05.09.2016 - 19.09.2016 durch den Gewässerkundlichen Landesdienst ein Messprogramm Niedrigwasser durchgeführt. In Sachsen-Anhalt wurden die Elbe in Wittenberg und Magdeburg, die Mulde in Dessau und die Saale in Groß Rosenburg untersucht. Hier erfahren Sie mehr. Durch den Gewässerkundlichen Landesdienst wurde aufgrund der Niedrigwassersituation vom 20.07.2015 bis zum 19.10.2015 in der Elbe und den Hauptnebenflüssen ein Sondermessprogramm Niedrigwasser durchgeführt. Das Messprogramm ist innerhalb der Flussgebietsgemeinschaft Elbe abgestimmt. In Sachsen-Anhalt wurden die Messstellen Wittenberg und Magdeburg an der Elbe sowie Rosenburg an der Saale untersucht. weitere Informationen Die Fischbestandserfassung diente dem Ziel, die von 2008 - 2012 durchgeführte fischereiliche Sonderbewirtschaftungsmaßnahme (erhöhte Weißfischentnahme) wissenschaftlich auszuwerten sowie den aktuellen Fischbestandes zu ermitteln. Das limnologische Gutachten beschreibt die limnologische Entwicklung des Sees im Zeitraum 2008–2012, basierend auf einem qualifizierten Gewässermonitoring. weitere Informationen Die Länder Sachsen-Anhalt, Brandenburg und Berlin unternehmen große Anstrengungen, um das Haveleinzugsgebiet für wandernde Fischarten wieder zugänglich zu machen. Auf der Suche nach einem geeigneten Standort für eine Fischaufstiegsanlage wurden im Auftrag des Landes Sachsen-Anhalt der Wehrstandort Neuwerben und die alte Havel­mün­dung in Sachsen-Anhalt sowie der Wehrstandort Gnevsdorf in Brandenburg näher unter­sucht. weitere Informationen Das Potsdam-Institut für Klimafolgenforschung e.V. (PIK) hat im Auftrag des Ministeriums für Landwirtschaft und Umwelt Sachsen-Anhalt von 2008 bis 2009 eine Studie mit dem Titel „Klimawandel in Sachsen-Anhalt – Verletzlichkeiten gegenüber den Folgen des Klimawandels“ durchgeführt. Neben verschiedenen anderen Sektoren wurde auch der Sektor Wasser hinsichtlich seiner Vulnerabilität gegenüber den Folgen des Klimawandels untersucht. Der Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt war als Mitglied des Projektbegleitenden Arbeitskreises an der Erarbeitung der Studie beteiligt. weitere Informationen Durch den Gewässerkundlichen Landesdienst wurden aus Radar-Daten des Deutschen Zentrums für Luft- und Raumfahrt Karten der Vernässungsflächen von Sachsen-Anhalt für die Gewässer Elbe, Saale, Bode, Weiße Elster und Schwarze Elster erzeugt. Für den Raum Schönebeck wurden zusätzlich hochauflösende Karte erzeugt. weitere Informationen

Grundwassertemperatur 2010

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen tiefgreifend verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abb. 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernheizleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad Die Veränderung der Bodeneigenschaften durch eine Anhäufung von Baukörpern (Veränderung der Oberflächenwärmeleitung und -wärmekapazität) Die Änderung des Strahlungshaushaltes durch Veränderungen in der Luftzusammensetzung Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Durch die o. g. Unterschiede wird im Vergleich zum Umland eine Veränderung des Wärmehaushalts hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Luft- bzw. Bodentemperatur (vgl. Karte 04.02, SenStadt 2001). Die langfristige Erwärmung des oberflächennahen Bodens führt auch zu einer Erwärmung des Grundwassers. Da die Temperatur die physikalischen Eigenschaften sowie die chemische und biologische Beschaffenheit des Grundwassers beeinflusst, können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna die Folge sein. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke liefert das Grundwasser. Daher ist der Schutz des Grundwassers vor tief greifenden Veränderungen wie z. B. einer signifikanten Grundwassertemperaturerhöhung oder -erniedrigung von hoher Bedeutung – speziell vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Land Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen und zu raumzeitlichen Darstellungen des Grundwassertemperaturfeldes verarbeitet und ausgewertet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein und als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologie und Hydrogeologie zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Innerhalb der letzten Jahre ist eine stark ansteigende Nachfrage nach Erdwärmesonden in Kombination mit Wärmepumpen zum Heizen und anderen thermischen Nutzungen des Untergrundes z. B. zur Klimatisierung von Gebäuden zu beobachten. Gerade im urbanen Bereich können die unterschiedlichsten thermischen Nutzungen auf engstem Raum miteinander konkurrieren. Um die Auswirkungen dieser Nutzungen zu überwachen, kommt der regelmäßigen Überwachung der Grundwassertemperatur eine zunehmend wichtige Bedeutung zu. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Wieviel Energie letztendlich über die Erdoberfläche in den Untergrund eingetragen wird, ist sehr stark von deren Oberflächenbeschaffenheit abhängig. Dabei spielen Faktoren wie z. B. die Farbe, der Feuchtegehalt sowie die Art und der Grad der Bodenbedeckung eine wichtige Rolle. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen konduktivem und konvektivem Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle der Erdoberfläche besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge von rd. 0,75 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird also im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die tageszeitlichen Schwankungen nur eine Tiefe von bis zu 1,0 m erfassen, reichen die jahreszeitlichen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 Meter über das Meeresniveau (vgl. Karte 01.08, SenStadt 2010a). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 Metern vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 Meter auf den Hochflächen (vgl. Karte 02.07, SenStadt 2010b). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Stark vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Gebiete ohne Besiedlung, überwiegend Vegetation mit geringer bis mittlerer Siedlungsdichte und mit hoher Siedlungsdichte, Stadtzentren und Industrieansiedlungen. Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem für die baulich hochverdichtete Innenstadt tief greifende Veränderungen im Wärmehaushalt gegenüber dem Umland. Durch anthropogene Aktivitäten wird Energie als Wärme in die Stadtatmosphäre abgegeben. So beträgt die mittlere Jahreslufttemperatur im Außenbezirk Dahlem 8,9 °C, im Innenstadtbereich sind dagegen die durchschnittlichen Temperaturen bereits bis auf über 10,5 °C angestiegen (vgl. Karte 04.02, SenStadt 2001).

Grundwassertemperatur 2012

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Flurabstände und Grundwasserfließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2015

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die seit den 1980er Jahren im oberflächennahen Grundwasser des Landes Berlin durchgeführten Temperaturmessungen zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 4 °C gegenüber dem dünner besiedelten Umland erhöht ist. Die Temperaturmessungen belegen, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung und den vorhandenen Nutzungen an der Erdoberfläche. Es lassen sich dabei direkte von indirekten Beeinflussungen der Grundwassertemperatur unterscheiden (s. a. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Unterschiede eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1961-1990, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser zu 100 % aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch einen Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturprofile aufgenommen. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte (Karte 02.12) oder der Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist z. B. eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel rd. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärmebewegung durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Transport Energie durch Stoßfortpflanzung zwischen den Molekülen transportiert. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen rd. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also rd. 1/1.000 geringer als die Globalstrahlung. Die Temperatur oberflächennaher Grundwässer wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Die regionale Jahresdurchschnittstemperatur an der Oberfläche in Berlin beträgt unter anthropogen unbeeinflussten Verhältnissen ca. 8,0 bis 8,5 °C. Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen 15 und max. 25 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau (vgl. Karte der Geländehöhen, Karte 01.08). In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie fünf bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Senktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (Abb. 4): Grün- und Freiflächen Wohnnutzung (geringe bis mittlere Siedlungsdichte) und Mischnutzung, Kerngebietsnutzungen, Gewerbe- und Industrienutzung (Stadtzentren mit hoher Siedlungsdichte). Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tief greifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1961 und 1990 nach der Karte Langjähriges Mittel der Lufttemperatur 1961 – 1990 ( Karte 04.02 ) am nordöstlichen Stadtrand in Buch zwischen 7,0 und 7,5 °C, im Innenstadtbereich sind dagegen ist das langjährige Mittel bis auf über 10,5 °C angestiegen.

Grundwassertemperatur 2020

Die Grundwassertemperatur im Ballungsraum von Berlin ist bzw. wird durch den Menschen nachhaltig verändert. Die Temperaturmessungen im oberflächennahen Grundwasser des Landes Berlin zeigen, dass im zentralen Innenstadtbereich die Durchschnittstemperatur z. T. um mehr als 5° C gegenüber dem dünner besiedelten Umland erhöht ist. Des Weiteren zeigen die Messung, dass sich dieser Temperaturanstieg zunehmend auch in größeren Tiefen mit mehr als 20 m bemerkbar macht. Die Ursachen für die Temperaturerhöhung sind vielfältig und stehen im direkten Zusammenhang mit der fortschreitenden baulichen Entwicklung, den vorhandenen Nutzungen an der Erdoberfläche und den Auswirkungen des Klimawandels. Es lassen sich direkte und indirekte Beeinflussungen der Grundwassertemperatur unterscheiden (s. Abbildung 1): Unter einer direkten Beeinflussung der Grundwassertemperatur werden alle Wärmeeinträge in das Grundwasser durch das Abwasserkanalnetz, Fernwärmeleitungen, Stromtrassen und unterirdische Bauwerke wie Tunnel, U-Bahnschächte, Tiefgaragen etc. verstanden. Sie umfassen auch Wärmeeinträge, die mit der Grundwasserwärmenutzung und -speicherung in Verbindung stehen. Unter einer indirekten Beeinflussung der Grundwassertemperatur werden Prozesse im Zuge der Urbanisierung verstanden, die mit der Veränderung des Wärmehaushalts der bodennahen Atmosphäre entstehen. Nach Gross (1991) sind als wichtige Größen zu nennen: Die Störung des Wasserhaushalts durch einen hohen Versiegelungsgrad. Die Veränderung der thermischen Oberflächeneigenschaften wie Oberflächenwärmeleitung und -wärmekapazität durch Versiegelung und Anhäufung von Baukörpern. Die Änderung des Strahlungshaushalts durch Veränderungen in der Luftzusammensetzung. Die anthropogene Wärmeerzeugung (Hausbrand, Industrie, Verkehr). Im Vergleich zum Umland wird durch diese Einflussgrößen eine Veränderung im Wärmehaushalt hervorgerufen. Die Stadt heizt sich langsam auf, speichert insgesamt mehr Wärme und gibt diese wieder langsam an die Umgebung ab, d. h., sie kann allgemein als ein riesiger Wärmespeicher betrachtet werden. Langfristig führt dieser Prozess zu einer Erhöhung des langjährigen Mittels der Lufttemperatur (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010, Karte 04.02 ). Von der langfristigen Erwärmung ist auch das oberflächennahe Grundwasser betroffen. Die physikalischen Eigenschaften, die chemische und biologische Beschaffenheit des Grundwassers ist temperaturabhängig. Die Folge einer Erwärmung können eine Qualitätsverschlechterung des Grundwassers und eine Beeinträchtigung der Grundwasserfauna zur Folge haben. Berlin bezieht sein Trinkwasser aus dem Grundwasser, welches fast ausschließlich im Land Berlin gewonnen wird. Auch ein Großteil des Brauchwassers für industrielle Zwecke wird dem Grundwasser entnommen. Daher ist dem Schutz des Grundwassers vor tiefgreifenden Veränderungen wie z. B. einer deutlichen Grundwassertemperaturerhöhung oder -erniedrigung eine große Bedeutung beizumessen – insbesondere vor dem Hintergrund einer nachhaltigen Wasserwirtschaft. Seit 1978 werden zur Bestandsaufnahme und Beobachtung der Veränderungen in tiefen Grundwassermessstellen und Temperaturmessstellen, die über das ganze Stadtgebiet des Landes Berlin verteilt sind, verstärkt Temperaturtiefenprofile aufgezeichnet. Das vorliegende Kartenwerk soll die Fortschreibung der vorliegenden Dokumentation zur zeitlichen Veränderung der Grundwassertemperatur unter dem Stadtgebiet sein, als Genehmigungsgrundlage für Grundwassertemperatur verändernde Maßnahmen dienen und Eingangsdaten für die Planung und Auslegung von Anlagen zur Erdwärmenutzung zur Verfügung stellen. Zusätzlich kann es in Kombination mit anderen thematischen Karten wie z. B. der Geologischen Skizze ( Karte 01.17 ), der Grundwassergleichenkarte ( Karte 02.12 ) oder den geothermischen Potenzialkarten ( Karte 02.18 ) zur Entscheidungsfindung und Vorplanung einer energetischen Bewirtschaftung des Grundwassers herangezogen werden. Die Untergrundtemperatur ist eine wichtige Größe für die Auslegung von Erdwärmesondenanlagen. Grundwassertemperatur und Temperaturjahresgang Die wesentliche Wärmequelle für den oberflächennahen Untergrund bis in ca. 20 m Tiefe ist die Sonneneinstrahlung, die auf die Erdoberfläche trifft. Diese ist maßgeblich für die Oberflächentemperatur verantwortlich. Der oberflächennahe Boden wird durch die eingestrahlte Sonnenenergie erwärmt und dieser gibt die Wärme an die Atmosphäre und den Untergrund ab. Die Jahressumme des Strahlungsanteils der auf eine horizontale Oberfläche auftrifft (die sog. Globalstrahlung) beträgt im Land Berlin im Mittel ca. 1.000 kWh pro m² und Jahr. Sehr viele Einzelparameter an der Grenzfläche Luft/Erde beeinflussen das thermische Lokalklima. Die Farbe, Zusammensetzung, Oberflächenrauigkeit, Bedeckung, der Versiegelungsgrad, der Wasserhaushalt sowie die Ausrichtung zum solaren Strahlungseinfall urbaner Oberflächen entscheiden darüber, wie viel Energie aufgenommen und in der Bausubstanz „gespeichert“ bzw. von dieser an die Atmosphäre bzw. den Untergrund abgegeben wird. Grundsätzlich unterliegen die Temperaturen an der Erdoberfläche und somit auch der Wärmeeintrag bzw. -austrag periodischen Schwankungen mit einem Zyklus von einem Jahr, entsprechend dem Verlauf der Jahreszeiten. Die Oberflächentemperatur dringt mit abnehmender Intensität in den Untergrund ein. Die Eindringtiefe und die Geschwindigkeit, mit der die Wärme transportiert wird, ist unter anderem abhängig von der Wärmeleitfähigkeit des Untergrundes. Beim Wärmetransport im Untergrund kann zwischen einem konduktiven und konvektiven Wärmetransport unterschieden werden. Während beim konvektiven Wärmetransport die Wärme durch Materie wie z. B. Grund- und Sickerwasser erfolgt, wird beim konduktiven Wärmetransport Energie ohne Materialbewegung im Gestein weitergeleitet. Im Gegensatz zur Sonneneinstrahlung als Hauptwärmequelle des oberflächennahen Bereichs besitzt der aus dem Erdinnern zur Oberfläche gerichtete Erdwärmestrom , der seinen Ursprung in der Wärmeentwicklung beim Zerfall radioaktiver Isotope hat, nur eine untergeordnete Bedeutung. In der kontinentalen Erdkruste ist die Wärmestromdichte – definiert als Wärmestrom pro Flächeneinheit senkrecht zur Einheitsfläche – regional verschieden. Nach Hurtig & Oelsner (1979) und Honarmand & Völker (1999) beträgt die mittlere Wärmestromdichte im Land Berlin zwischen ca. 80 und 90 mW/m². Daraus berechnet sich als Jahressumme eine Energiemenge zwischen ca. 0,7 und 0,8 kWh pro m² und Jahr und ist somit also ca. 1/1.000 geringer als die Globalstrahlung. Die Temperatur des oberflächennahen Grundwassers wird im Wesentlichen durch den Energieaustausch zwischen Sonne, Erdoberfläche und Atmosphäre, untergeordnet durch den aus dem Erdinneren zur Oberfläche gerichteten Wärmestrom bestimmt. Das langjährige Mittel der Lufttemperaturen 1981-2010 liegt in Berlin im Jahresmittel je nach Ort zwischen 9,3 °C und 10,4 °C (SenStadtWohn (2021)). Während die täglichen Schwankungen nur eine Tiefe von max. 1 m erfassen, reichen die jahreszeitlichen Schwankungen bis in eine Tiefe zwischen ca. 15 und 20 m. Ab dieser Tiefe, in der jahreszeitliche Einflüsse nicht mehr zu registrieren sind, – der sog. neutralen Zone -, steigt die Temperatur in Abhängigkeit von der Wärmeleitfähigkeit der Gesteine und der regionalen Wärmestromdichte an (Abb. 2). Im Berliner Raum beträgt der durchschnittliche Temperaturanstieg im Bereich bis ca. 300 m Tiefe 2,5 bis 3 °C / 100 m. Oberflächengestalt und Grundwassersituation Das in nahezu ostwestlicher Richtung verlaufende Warschau-Berliner Urstromtal trennt die Barnim-Hochfläche im Norden von der Teltow-Hochfläche und der Nauener Platte im Süden der Stadt (Abb. 3). Die Geländehöhen des Urstromtales betragen 30 bis 40 m über NHN, während die Hochflächen durchschnittlich 40 bis 60 m über NHN liegen. Einzelne Höhen erheben sich bis über 100 m über das Meeresniveau. In Berlin ist der Porenraum der überwiegend sandig und kiesigen Sedimente der oberen 150 bis 200 m vollständig bis nahe an die Oberfläche mit Grundwasser erfüllt, das zur Trinkwasserversorgung der Stadt genutzt wird. Der Abstand vom Grundwasser bis zur Geländeoberkante (Grundwasserflurabstand) schwankt je nach Morphologie und Geologie zwischen 0 m und wenigen Metern im Urstromtal sowie 5 bis über 30 m auf den Hochflächen (vgl. Karte Flurabstand des Grundwassers, Karte 02.07 ). Die Grundwasserentnahmen zur Trink- und Brauchwassergewinnung haben zur Ausbildung von weit gespannten Absenktrichtern der Grundwasseroberfläche geführt, die die natürlichen Grundwasserflurabstände und -fließgeschwindigkeiten erhöhen sowie die natürlichen Grundwasserfließrichtungen verändern. Dadurch sind in den Bereichen, in denen Brunnengalerien in der Nähe von Flüssen und Seen Grundwasser fördern, influente Verhältnisse entstanden, d. h. das Oberflächenwasser infiltriert als Uferfiltrat in das Grundwasser. Da das Oberflächenwasser aber durch vielfache Kühlwassereinleitungen von Heizkraftwerken ganzjährig erwärmt ist (wie z. B. im Bereich der Spree), führt diese Infiltration im Einzugsbereich des Oberflächengewässers zwangsläufig zu einer Erwärmung des Grundwassers. Besiedlungsstruktur und klimatische Verhältnisse Das Land Berlin besitzt eine polyzentrale Besiedlungsstruktur, die durch das Vorhandensein zweier Hauptzentren, mehrerer kleinerer Stadtzentren sowie einem dichten Nebeneinander von Wohnen, Grünflächen, Gewerbe und Industrie charakterisiert ist. Größere Gewerbegebiete und Industrieansiedlungen liegen bevorzugt an den vom Stadtkern radial zum Stadtrand gerichteten Siedlungs- und Entwicklungsachsen sowie an kanalisierten Oberflächengewässern. Vereinfacht lassen sich folgende Unterscheidungen treffen (vgl. Abb. 4): Grün- und Freiflächen Bebaute Flächen Bei der Betrachtung der lokalklimatischen Verhältnisse in Berlin zeigt vor allem die baulich hochverdichtete Innenstadt tiefgreifende Temperaturveränderungen gegenüber dem Umland. So beträgt das langjährige Mittel der Lufttemperatur zwischen 1981 und 2010 (vgl. Karte Langjähriges Mittel der Lufttemperatur 1981-2010 ( Karte 04.02 ) beispielsweise am nordöstlichen Stadtrand in Buch 9,5 °C, im Innenstadtbereich wird dagegen ein langjähriges Mittel von bis zu 10,4 °C gemessen.

Umweltverträgliche Nutzung geothermischer Wärmespeicher

Im Forschungsvorhaben "Umweltverträgliche Nutzung geothermischer Wärmespeicher" wurde untersucht, welche temperaturbedingten Einflüsse unterirdische thermische Energiespeicher auf die Grundwasserqualität haben. Die Abschätzung der thermischen Auswirkungsräume erfolgte mit numerischen Modellierungen. Temperatureinflüsse auf hydrochemische Prozesse wurde mit analytischen Gleichungen berechnet. Anhand umfangreicher Literaturstudien wurden Temperaturschwellenwerte abgeleitet und ein Prüfschema vorgeschlagen. Aufgrund der hohen Temperaturempfindlichkeit der Grundwasserfauna ist die tolerierbare Temperaturspreizung in sauerstoffreichen Grundwasserleitern stärker einzuschränken als in sauerstoffarmen Grundwasserleitern, wo ohne Sauerstoff keine Grundwassertiere vorkommen. In diesen können sich die Mikroorganismen leichter an veränderte Umgebungsbedingungen anpassen. Veröffentlicht in Texte | 113/2022.

Umweltverträgliche Nutzung geothermischer Wärmespeicher

Um den fossilen Energieverbrauch zu reduzieren, sind unterirdische thermische Energiespeicher (UTES), auch Geothermische Wärmespeicher (GTS) genannt, ein Baustein in der Transformation der Wärmeversorgung und Kühlung. Die Speisung solcher Speicher soll über erneuerbare Energieträger und anderweitige Abwärme erfolgen. Das Grundwasser wird dabei thermisch beeinflusst. Der thermische Auswirkungsraum von UTES wurde mit numerischen Simulationen zur saisonalen Pufferung und Wärmespeicherung, zur Gebäudeklimatisierung und zur Nutzung von Überschussstrom (Power-to-Heat) systematisch untersucht und veranschaulicht. Auswirkungen von Temperaturänderung auf hydro- und geochemische Prozesse und die Grundwasserökologie wurden unter Einbeziehung umfangreich recherchierter Fachliteratur untersucht. In sauerstoffreichen (oxischen) Süßwasser-Aquiferen im Lockergestein bedingt die hohe Temperaturempfindlichkeit der Grundwasserfauna zu ihrem vorsorglichen Schutz und zur Aufrechterhaltung ihrer Ökosystemleistungen engere Temperaturschwellen, um Auswirkungen geringfügig zu halten. Weniger restriktive Temperaturgrenzen sind für sauerstoffarme (anoxische) Aquifere ableitbar, in denen sich ein Mikrobiom flexibler an Veränderungen von Wassertemperatur und -beschaffenheit anpassen kann. Mit den abgeleiteten thermischen Geringfügigkeitsschwellen ist eine nachhaltige Bewirtschaftung des Grundwassers auch mit geothermischen Wärmespeichern möglich. Die aufgezeigten Beispiele erleichtern involvierten Planern und Fachleuten im Bereich Geologie, Hydrogeologie, Grundwasserökologie, Geothermie sowie in Behörden eine Abschätzung der thermischen Ge-ringfügigkeit. Thermische Geringfügigkeit bedeutet, dass durch die Nutzung geothermischer Speicher keine nachteiligen Umweltauswirkungen für das Grundwasser bestehen. Quelle: Forschungsbericht

Untersuchung Meiofauna Seffenter Quellen

Monitoring Grundwasserfauna Sachsen-Anhalt 2016 & 2017 Endbericht zum Referenzmonitoring und Biomonitoring Nitrat Proasellus slavus (REMY 1948) - Endbericht zum Referenzmonitoring und Biomonitoring Nitrat 2016 & 2017 - Endbericht zum Referenzmonitoring und Biomonitoring Nitrat 2016 &2017 Monitoring Grundwasserfauna Sachsen-Anhalt 2016 & 2017 Referenzmonitoring und Biomonitoring Nitrat IM AUFTRAG DES LANDESBETRIEBES FÜR HOCHWASSERSCHUTZ UND W ASSERWIRTSCHAFT SACHSEN-ANHALT, HALLE/S. LHW-VERGABENUMMER: 1/S/0221/HAL IGÖ GMBH AUFTRAGSNUMMER: 124-16 Bearbeitung: DR. DIRK MATZKE DR. ANDREAS FUCHS DR. HEIDE STEIN PD DR. HANS JÜRGEN HAHN Institut für Grundwasserökologie IGÖ GmbH Im Niederfeld 15 D-76829 Landau/Pfalz Landau, im November 2017 Inhaltsverzeichnis 1 VERANLASSUNG / ZIELSETZUNG .................................................................................... 3 1.1FORTSETZUNG REFERENZMONITORING ..................................................................................... 3 1.2BIOMONITORING (ORIENTIERUNGSBEPROBUNG ZUR NITRAT-PROBLEMATIK) ............................... 3 2 MESSSTELLENAUSWAHL UND BEPROBUNG ................................................................ 5 2.1REFERENZMONITORING ............................................................................................................ 5 2.2NITRATBIOMONITORING ............................................................................................................ 5 3 UNTERSUCHUNGSERGEBNISSE DES REFERENZMONITORINGS ............................... 9 3.1ZUSAMMENFASSUNG DER UNTERSUCHUNGSERGEBNISSE 2010-2017 ........................................ 9 3.2ERGEBNISSE DES REFERENZMONITORINGS ............................................................................. 13 3.3 4 Ergebnisse des Referenzmonitorings 2016 .................................................................... 13 3.2.2Ergebnisse des Referenzmonitorings 2017 .................................................................... 14 3.2.3Ergebnisse des Referenzmonitorings in den Hydrogeologischen Bezugseinheiten im Untersuchungszeitraum von 2010-2017 .................................................................... 16 VERTEILUNG DER FAUNA IN DEN AQUIFERTYPEN ..................................................................... 23 DAS NITRATBIOMONITORING ......................................................................................... 26 4.1 4.2 5 STATISTISCHE ANALYSE DES NITRATBIOMONITORINGS - METHODIK .......................................... 26 4.1.1Datenaufbereitung und einfache, nicht-parametrische Tests ......................................... 26 4.1.2Multivariate Analysen ...................................................................................................... 27 BESIEDLUNG DER STANDORTE DES NITRATBIOMONITORINGS IN DEN JAHREN 2016 UND 2017 ... 28 4.2.1Allgemeine Befunde ........................................................................................................ 34 4.2.2Multivariate Auswertung .................................................................................................. 35 ZUSAMMENFASSUNG ...................................................................................................... 39 5.1REFERENZMONITORING. ......................................................................................................... 39 5.2NITRATBIOMONITORING .......................................................................................................... 39 6 7 3.2.1 AUSBLICK / HANDLUNGSEMPFEHLUNGEN.................................................................. 40 6.1REFERENZMONITORING .......................................................................................................... 40 6.2NITRATBIOMONITORING .......................................................................................................... 41 LITERATUR ........................................................................................................................ 43

Auswirkungen thermischer Veränderungen infolge der Nutzung oberflächennaher Geothermie auf die Beschaffenheit des Grundwassers und seiner Lebensgemeinschaften

Das ⁠UBA⁠ UFOPLAN Projekt widmete sich folgenden Themenschwerpunkten: (1) Den möglichen Auswirkungen von Temperaturveränderungen auf die Wasserqualität (inkl. pathogener Keime & Viren); (2) Den möglichen Auswirkungen auf Grundwasserlebensgemeinschaften und Ökosystemfunktionen; (3) Dem Ausbreitungsverhalten von Kälte und Wärme im gesättigten Untergrund und dem thermischen Regenerationsvermögen; (4) Der Erarbeitung spezifischer Empfehlungen für eine umweltverträgliche Nutzung geothermischer Technologien. Im Zuge des Projekts wurden Laborexperimente, Felduntersuchungen und verschiedene Modellrechnungen durchgeführt. Bereits vorliegende Erkenntnisse aus eigenen Vorversuchen, früheren Projekten, sowie aus anderen themenverwandten Projekten und der internationalen Literatur wurden zusammengetragen und zusammen mit den neu gewonnenen Daten interpretiert. Die gesammelten Erkenntnisse untermauern, dass sich Temperaturveränderungen im Grundwasser bzw. im Aquifer auf die Zusammensetzung von Lebensgemeinschaften, ihre Aktivitäten und somit auf Ökosystemprozesse auswirken.

1 2 3 4