Das Projekt "Teilvorhaben: Thorex-Engine" wird vom Umweltbundesamt gefördert und von MAHLE Powertrain GmbH durchgeführt. Das vorliegende Verbundvorhaben definiert die folgenden übergeordneten Zielsetzungen:Sicherung verbrennungsmotorischer Abwärme im Temperaturbereich größer als 300 Grad C,Integration eines thermoelektrischen Generators in das Abschirmsystem eines verbrennungsmotorischen Systems sowie Bauraumoptimierte 'Heat-to-Cool'-Technologie. Durch die Kombination dieser technologischen Ansätze kann die im als Verbrennungsmotor ausgeführten Range Extenders anfallende Abwärme zu jedem Zeitpunkt variabel gewandelt und/oder gespeichert werden. Der Gesamtwirkungsgrad des angestrebten seriellen Range Extender Hybridfahrzeugs wird so zu jedem Zeitpunkt optimiert. In Absprache mit den 'Simulationsteams' müssen die nötigen Eingangsbedingungen für Ihre Modelle besprochen werden. Dazu gehören teilweise geometrische Werte, Stoffströme, Temperaturen, Drücke, Leistungen usw. Im Anschluss muss überprüft werden, in wie weit diese geforderten Größen ermittelt werden können. Dazu gehört eine Analyse der vorhandenen bzw. beschaffbaren Messtechnik. Diese muss insoweit bewertet werden, dass eine ungefähre Fehlerabschätzung errechenbar ist. Die Positionen der Messelemente am Verbrennungsmotor und an dessen Peripherie müssen definiert werden. Dies findet wieder in Zusammenarbeit mit den 'Simulationsteams' statt. Die Positionen werden so gewählt, sodass der äußere Einfluss bzw. die Fehleranfälligkeit minimal ist. Während der Planung des Messprogramms werden mitunter den geplanten Simulationsszenarien Beachtung geschenkt.
Das Projekt "Teilvorhaben: Entwicklung der Wärmeüberträger für Speicher, Aufbau des Funktionsmusterprüfstandes und Durchführung von Messungen und Versuchen" wird vom Umweltbundesamt gefördert und von WätaS Wärmetauscher Sachsen GmbH - Abteilung Forschung und Entwicklung durchgeführt. Besteht in der Entwicklung sehr schneller modularer Speichereinheiten für den Temperaturen von 150 bis 350 Grad C mit bisher nicht erreichter Energie- und Leistungsdichte. Die Dynamik der Speichermodule soll für die Erzeugung von Prozessdampf geeignet sein. Erreichbar wird dies durch eine vollmetallische Lösung, bei der neuartige Wärmeleitstrukturen in ein PCM integriert und stoffschlüssig mit dem Wärmeüberträger verbunden werden. Damit unterscheidet sich die Lösung von bisherigen am Markt bekannten Ansätzen. Es wird durch schnelle Be- und Entladezyklen ein Kostenvorteil gegenüber der Erzeugung 'neuer' Wärme angestrebt. Die Speichermodule nutzen das latente Wärmespeichervermögen des PCM während des Schmelzens / Erstarrens. Geeignete PCM im Temperaturbereich sind Salzmischungen, mit einer volumenbezogenen Schmelzwärme/ Energiedichte von bis zu 150 kWh/m3. Der Nachteil der PCM ist bei der Wärmeleitfähigkeit wird durch Integration hochporöser metallischer Wärmeleitstrukturen in das PCM kompensiert. Arbeitsplanung erfolgt nach Arbeitspaketen/ Meilensteinen. Auf der Grundlage Lasten-Pflichtenheft erfolgt die Entwicklung von 3-DE Strukturen, der Beschichtung und Fügetechnik. als Demonstratoren/Funktionsmuster. Mittels projektspezifischem Prüfstand erfolgen Messungen und Tests der Funktionsmuster. Daraus erfolgen Ableitungen zur Präzisierung/ Änderung des Pflichtenheftes.
Das Projekt "Teilvorhaben: ThoRex-Testing" wird vom Umweltbundesamt gefördert und von Elring Klinger Motortechnik GmbH durchgeführt. Ziel ist es, am Prüfstand eine breite Messdatenbasis zur Validierung der Simulationsmodelle aus den anderen Teilvorhaben zu erarbeiten, die Benefits Gesamtsystemarchitektur zu bestätigen und die Regelstrategien für den Fahrzeugbetrieb experimentell zu optimieren. In seiner endabgestimmten Variante soll der Range-Extender mit angekoppeltem Thermomodul am Prüfstand simulierte Fahrzeug-Fahrzyklen absolvieren und das Potenzial des Gesamtsystems demonstrieren. Im Teilvorhaben 'Prüfstandsmessungen' sollen die experimentellen Untersuchungen an dem entwickelten Thermomodul und seinen Einzelkomponenten durchgeführt werden. Eine besondere Herausforderung ist es, das Thermomodul zusammen mit dem Range-Extender zu betreiben und für unterschiedliche Fahrprofile optimierte Betriebsstrategien zu entwickeln und zu demonstrieren. Auf dem Motorprüfstand sind unter reproduzierbaren Versuchsbedingungen Vermessungen möglich um den realen Einsatzfall optimal nachzubilden. Die Arbeiten beinhalten die folgenden Schritte: 1-Darstellung eines Range-Extenders mit Thermomodul als abgestimmtes Gesamtkonzept am Motorprüfstand. 2-Verfizieren der Benefits, die für ein solches Gesamtkonzept mittels Simulationsrechnungen vorher ermittelt wurden. 3-Variieren der Optimierungsparameter am Range-Extender & Thermomodul unter unterschiedlichen Fahrbedingungen. 4-Entwickeln und Optimieren der notwendigen Regelstrategien für das Thermomodul für den Betrieb unter unterschiedlichen Randbedingungen.
Das Projekt "Teilvorhaben: Auslegung, Planung des Energiesystems" wird vom Umweltbundesamt gefördert und von Küttner GmbH & Co. KG durchgeführt. Im Rahmen dieses Verbundvorhabens ist die Entwicklung und Umsetzung eines innovativen Energiespeichersystems zur Nutzung von diskontinuierlicher, industrieller Abwärme geplant. Kernkomponente des Systems stellt ein Hochtemperatur-Wärmespeicher (einsetzbar bis 300 C) dar. Dieser soll als sogenannter Zweistoffspeicher ausgeführt werden. Hierbei wird eine Feststoffschüttung (FSS) im Direktkontakt von einer Wärmeträgerflüssigkeit umströmt. Dieses drucklose Konzept verspricht erhebliche Vorteile gegenüber alternativen Speicherkonzepten (z.B. Druckwasserspeicher oder Thermoölspeicher) insbesondere in Bezug auf die Herstellungskosten. Ein weiterer Schwerpunkt des Verbundvorhabens liegt auf der Anpassung einer Absorptionswärmepumpe (AWP) auf den Betrieb mit Thermoöl als Wärmeträger. Diese dient zur Bereitstellung von Prozesskälte sowie zur Bereitstellung von Heizwärme bei großem Hub. Die gespeicherte Abwärme kann dadurch vielfältig zur Bereitstellung von Prozesskälte, zum Antrieb der AWP, zum Heizen und zur Brauchwasserbereitung genutzt. Das zu entwickelnde Energiespeichersystem wird im Projektverlauf am Standort der Giesserei Heunisch in Bad Windsheim im Rahmen einer Pilotanlage installiert und betrieben. Die Demonstration erfolgt unter realen Betriebsbedingungen. Der Anlagenbauer Küttner liefert das notwendige Know-how im Bereich der Anlagentechnik von Thermoölsystemen und ist bei der Planung und Entwicklung des Energiesystems beteiligt. Der Schwerpunkt des ZAE Bayern liegt bei der Komponenten- und Systementwicklung sowie bei der wissenschaftlichen Auswertung der Ergebnisse.
Das Projekt "Teilvorhaben: System- und Komponentenentwicklung" wird vom Umweltbundesamt gefördert und von Bayerisches Zentrum für Angewandte Energieforschung e.V. durchgeführt. Im Rahmen dieses Verbundvorhabens ist die Entwicklung und Umsetzung eines innovativen Energiespeichersystems zur Nutzung von diskontinuierlicher, industrieller Abwärme geplant. Kernkomponente des Systems stellt ein Hochtemperatur-Wärmespeicher (einsetzbar bis 300 C) dar. Dieser soll als sogenannter Zweistoffspeicher ausgeführt werden. Hierbei wird eine Feststoffschüttung (FSS) im Direktkontakt von einer Wärmeträgerflüssigkeit umströmt. Dieses drucklose Konzept verspricht erhebliche Vorteile gegenüber alternativen Speicherkonzepten (z.B. Druckwasserspeicher oder Thermoölspeicher) insbesondere in Bezug auf die Herstellungskosten. Ein weiterer Schwerpunkt des Verbundvorhabens liegt auf der Anpassung einer Absorptionswärmepumpe (AWP) auf den Betrieb mit Thermoöl als Wärmeträger. Diese dient zur Bereitstellung von Prozesskälte sowie zur Bereitstellung von Heizwärme bei großem Hub. Die gespeicherte Abwärme kann dadurch vielfältig zur Bereitstellung von Prozesskälte, zum Antrieb der AWP, zum Heizen und zur Brauchwasserbereitung genutzt. Das zu entwickelnde Energiespeichersystem wird im Projektverlauf am Standort der Giesserei Heunisch in Bad Windsheim im Rahmen einer Pilotanlage installiert und betrieben. Die Demonstration erfolgt unter realen Betriebsbedingungen. Der Anlagenbauer Küttner liefert das notwendige Know-how im Bereich der Anlagentechnik von Thermoölsystemen und ist bei der Planung und Entwicklung des Energiesystems beteiligt. Der Schwerpunkt des ZAE Bayern liegt bei der Komponenten- und Systementwicklung sowie bei der wissenschaftlichen Auswertung der Ergebnisse.
Das Projekt "Teilprojekt: Umsetzung einer Demonstratoranlage" wird vom Umweltbundesamt gefördert und von Gießerei Heunisch GmbH durchgeführt. Im Rahmen dieses Verbundvorhabens ist die Entwicklung und Umsetzung eines innovativen Energiespeichersystems zur Nutzung von diskontinuierlicher, industrieller Abwärme geplant. Kernkomponente des Systems stellt ein Hochtemperatur-Wärmespeicher (einsetzbar bis 300 C) dar. Dieser soll als sogenannter Zweistoffspeicher ausgeführt werden. Hierbei wird eine Feststoffschüttung (FSS) im Direktkontakt von einer Wärmeträgerflüssigkeit umströmt. Dieses drucklose Konzept verspricht erhebliche Vorteile gegenüber alternativen Speicherkonzepten (z.B. Druckwasserspeicher oder Thermoölspeicher) insbesondere in Bezug auf die Herstellungskosten. Ein weiterer Schwerpunkt des Verbundvorhabens liegt auf der Anpassung einer Absorptionswärmepumpe (AWP) auf den Betrieb mit Thermoöl als Wärmeträger. Diese dient zur Bereitstellung von Prozesskälte sowie zur Bereitstellung von Heizwärme bei großem Hub. Die gespeicherte Abwärme kann dadurch vielfältig zur Bereitstellung von Prozesskälte, zum Antrieb der AWP, zum Heizen und zur Brauchwasserbereitung genutzt. Das zu entwickelnde Energiespeichersystem wird im Projektverlauf am Standort der Giesserei Heunisch in Bad Windsheim im Rahmen einer Pilotanlage installiert und betrieben. Die Demonstration erfolgt unter realen Betriebsbedingungen. Der Anlagenbauer Küttner liefert das notwendige Know-how im Bereich der Anlagentechnik von Thermoölsystemen und ist bei der Planung und Entwicklung des Energiesystems beteiligt. Der Schwerpunkt des ZAE Bayern liegt bei der Komponenten- und Systementwicklung sowie bei der wissenschaftlichen Auswertung der Ergebnisse.
Das Projekt "Teilvorhaben: Entwicklung der Herstellungs-, Befüll- und Verkapselungstechnologie metallverkapselter Hochtemperatur-PCM und deren thermische Charakterisierung" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Institutsteil Dresden durchgeführt. Die Entwicklung effektiver thermischer Speichertechnologien stellt einen wichtigen Baustein zur Umsetzung des im Jahre 2011 verabschiedeten Energiekonzeptes der Bundesregierung dar. Neben der Erhöhung des Anteils regenerativer Energien an der Primärenergieversorgung muss der Fokus ebenfalls auf der Erschließung energetischer Einsparpotenziale liegen. Maßnahmen zur Steigerung der Energieeffizienz bieten sich besonders im Bereich der Prozesswärmenutzung an, die im Jahr 2008 rund 23 % der Endenergie in Deutschland ausmachte (552 Mrd. kWh). Ein großer Teil dieser Prozesswärme steht nach dem technologischen Prozess als Abwärme zur Verfügung. Wärmespeicher erlauben die örtlich und vor allem zeitlich versetzte Nutzung dieser Abwärme und damit die Erschließung dieses enormen energetischen Potenzials. Eine Möglichkeit zur Speicherung thermischer Energie im Temperaturbereich zwischen 130 °C und 350 °C sind Phasenwechselmaterialien (PCM - phase change materials, Wärmespeicherung beim Phasenübergang fest-flüssig). Übliche PCM-Speicherelemente sind jedoch gekennzeichnet durch einen begrenzten Wärmeübergang zwischen Wärmeträger und PCM sowie die schlechte Wärmeleitung im PCM, beide Effekte beschränken die Wärmeleistung entscheidend. In den vergangenen Jahren wurde wiederholt die Forderung nach einem mechanisch stabilen 'PCM-Schüttgut' laut, welches gut durchströmbar ist und damit insbesondere bei Gasen einen effektiven Wärmetransport gewährleistet. PCM-gefüllte metallische Hohlkugeln im Millimeter-Durchmesserbereich sollen die Funktion dieses Schüttgutes übernehmen. Anwendungsmöglichkeiten sind vorrangig die Aus-/Einkopplung von Abwärme aus/in Gasströmungen (z. B. heiße Abgase einer Verbrennung) bzw. die Verbesserung der Effektivität von Katalysatoren durch eine Vergleichmäßigung von deren Arbeitstemperatur. Ein weiterer Ansatz besteht darin, die meist geringe Wärmekapazität von Wärmeträgerflüssigkeiten für den Hochtemperaturbereich (z. B. Thermoöle) durch Zugabe der PCM-Kapseln deutlich zu steigern. Die Arbeiten umfassen die Auswahl geeigneter PCM (Salze/-mischungen, Zuckeralkohole, Hydroxide ) nach der Temperatur des Phasenüberganges, der Schmelzenthalpie und besonders bezüglich der korrosiven Wechselwirkung mit den porösen Schalen der als Kapseln dienenden metallischen Hohlkugeln. Neben der Fertigung der metallischen Hohlkugeln stehen das Befüllen mit PCM (die Infiltration) sowie das zuverlässige Aufbringen einer Versiegelung und - falls erforderlich - einer katalytischen Beschichtung im Fokus. Der Einsatz als pumpbare Wärmekapazität in Thermoölen erfordert optimierte mechanische Eigenschaften der PCM-Kapseln. Aktuelle Projektarbeiten umfassen die Auswahl und wärmetechnische Charakterisierung geeigneter PCM sowie die Auswahl der Werkstoffe für die metallischen Hohlkugeln bzw. deren Versiegelung. Ebenfalls in Entwicklung befindet sich die Infiltrationstechnologie der Kugeln im Labormaßstab.
Das Projekt "Teilvorhaben: Systemische optimierte Abgasanlage" wird vom Umweltbundesamt gefördert und von Friedrich Boysen GmbH & Co. KG durchgeführt. Ziel dieses Vorhabens ist es, eine auf das zu entwickelnde Thermomodul abgestimmte strömungs- und ladungswechseloptimierte Abgasanlage für einen Range-Extender-Motor auszulegen und aufzubauen. Dazu sind in einem ersten Schritt Messungen an einem geeigneten Motor zur Ermittlung der Randbedingungen für die Auslegung durchzuführen. Anschließend wird in mehreren Iterationsschleifen von Konstruktion und Strömungsberechnung eine Abgasanlage konzipiert, die die besonderen Erfordernisse des Thermomoduls (homogene Anströmung bei möglichst hoher Temperatur) mit den generellen Anforderungen an eine Abgasanlage (geringer Gegendruck, Schalldämpfung) miteinander verbindet. Letztlich soll eine solche Abgasanlage mit integrierten Thermomodul aufgebaut, mit Messstellen versehen und den Tests zugeführt werden.
Das Projekt "Teilvorhaben: Prozessführung und Funktionsnachweis" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Dieses Vorhaben verfolgt das Ziel die zwei prinzipiellen Vorteile thermochemischer Wärmespeicher zu demonstrieren: (1) Getrennte Lagerung der Reaktionspartner und damit verlustfreie Speicherung (2) die Trennung von Kapazität und thermischer Leistung des Speichers und damit eine deutliche Kostenreduktion bei der Speicherung thermischer Energie. Im Rahmen dieses Vorhabens werden daher ingenieurwissenschaftliche sowie materialwissenschaftliche Disziplinen kombiniert, um die einzelnen Teilbereiche in Bezug auf das Speichermaterial, die Bewegung des Pulvers und die chemische Reaktion mit Wärmeein- und -auskopplung weiterzuentwickeln. Das abschließende Ziel des Vorhabens ist die Bestätigung der Realisierbarkeit des entwickelten Leitkonzepts für chemische Speicher mit bewegtem Reaktionsbett durch Versuchsreihen im Labormaßstab. Das Vorhaben gliedert sich im Wesentlichen in drei Arbeitsabschnitte: Im Rahmen des ersten Abschnitts wird ausgehend von der vorhandenen Expertise der beteiligten Partner ein Reaktorkonzept spezifiziert, das die Grundlage für den weiteren Projektverlauf bildet. Im zweiten Arbeitsabschnitt werden dann parallel die drei wesentlichen Fragestellungen für ein bewegtes Reaktionsbett zur thermochemischen Wärmespeicherung zielgerichtet bearbeitet (Materialentwicklung, Bewegung der Schüttung, Reaktionsführung). Den Abschluss des Vorhabens bildet der Funktionsnachweis im Labormaßstab am Institut für Technische Thermodynamik des DLRs.
Das Projekt "Teilvorhaben: Integration von TEG-Materialien und thermoelektrische Wandlung" wird vom Umweltbundesamt gefördert und von GreenIng GmbH & Co. KG durchgeführt. Motivation: Die Elektrifizierung von Hybridfahrzeugen bietet die Möglichkeit elektrische Energie einfach zu speichern und zu verwerten. Dadurch können Technologien zur Gesamtwirkungsgradsteigerung zum Einsatz kommen, die bisher unrentabel waren. Die Elektrifizierung bedingt jedoch auch eine Verknappung der Abwärme der Komponenten im Antriebstrang. Somit sind Systeme zur Speicherung von Wärme und zur wirkungsgradoptimalen Bereitstellung von Kühlleistung ein wichtiger Beitrag zur Kundenakzeptanz der Elektromobilität. Ziele: Ziel ist die Erschließung von Effizienzsteigerungspotentialen im kundenrelevanten Realbetrieb eines Range-Extender-Antriebssystems mit Hilfe systemischer Integration von - Thermischer Wandlung in funktionsintegrierten Hitzeschutzbauteilen, - thermischer Speicherung im Temperaturbereich größer als 300 C und - bauraumoptimierter 'heat to cool'-Technologie. Lösungsweg: Der Gesamtwirkungsgrad eines seriellen Range Extender Hybridfahrzeugs wird damit gesteigert, dass die Abwärme des Range Extender Verbrennungsmotors variabel gewandelt oder gespeichert wird. Für die Nutzung kommen je nach Betriebspunkt die o.g. Technologien zum Einsatz. In der Projektdurchführung werden Simulation-, Konstruktion- und Versuchsumfänge bearbeitet. Simulativ wird ein Antriebsstrangmodell in einer virtuellen Gesamtfahrzeugumgebung aufgebaut, das um ein Thermomodul ergänzt ist, welches Restwärme mit verschiedenen Technologien nutzt. Auf Basis von Simulationsrechnungen werden belastbare Aussagen über den Einfluss von Restwärmenutzung auf den Gesamtsystemwirkungsgrad in jeweiliger Abhängigkeit von den Betriebsbedingungen erarbeitet. Das Thermomodul wird dabei aus funktionalen Submodulen zur thermoelektrischen Wandlung, zur Speicherung thermischer Energie und zur Einbindung von 'heat to cool'-Technologie zusammengesetzt sein. Im Lauf des Projekts wird aus der Simulation eine Betriebsstrategie für das Gesamtsystem entwickelt, die die Abwärme jederzeit so nutzt, dass der Fahrzeugwirkungsgrad maximiert wird. Konstruktiv werden zunächst Untersuchungen zu anwendungsoptimierten Werkstoffsystemen bezüglich der Kernfunktionalitäten des Thermomoduls, thermisches Speichern und der Adsorptionskälte-Erzeugung, durchgeführt. Abhängig von den Ergebnissen der vorgeschalteten Arbeitspakete werden die Komponenten konzipiert und die Bauräume optimiert. Das thermische Speichersystem und der thermo-elektrische Wandler werden durch umfangreiche CAE-gestützte Darstellungen, insbesondere bezüglich der mechanischen Stabilität und Gesamtsystemeffizienz, in ein thermisches Abschirmsystem integriert. Die konsolidierte Kombination des Thermomoduls wird prototypenhaft im Rahmen eines angepassten Abgassystems eines Range Extenders erarbeitet. Die Validierung des Konzeptträgers wird mit dem Ziel des Konzeptnachweises an einem geeigneten Prüfstand erprobt. Darüber hinaus ermöglichen umfangreiche Erprobungen die Verifizierung und Validierung aller Simulationsmodelle. usw.
Origin | Count |
---|---|
Bund | 14 |
Type | Count |
---|---|
Förderprogramm | 14 |
License | Count |
---|---|
open | 14 |
Language | Count |
---|---|
Deutsch | 14 |
Resource type | Count |
---|---|
Keine | 3 |
Webseite | 11 |
Topic | Count |
---|---|
Boden | 4 |
Lebewesen & Lebensräume | 7 |
Luft | 11 |
Mensch & Umwelt | 14 |
Wasser | 4 |
Weitere | 14 |