technologyComment of phenol production (RER): This dataset models the Hock process, which is the main process that is used for the production of phenol. In this process, cumene is transformed into phenol in two stages: (i) oxidation of the cumene, and (ii) cleavage into phenol and acetone. The oxidation happens in large reactors at a temperature of about 90-120°C and 0.5-0.7 MPa pressure. The whole reaction is autocatalytic and exothermic, releasing about 800 kJ per kilogram of cumene hydroperoxide to the environment by active cooling systems, mainly water. The second reaction – the cleavage – is an acid-catalyzed reaction, using almost exclusively sulphuric acid as catalyst. Two different ways are used within industry – called homogeneous phase (using 0.1-2% sulphuric acid) rsp. heterogeneous phase (40-45% sulphuric acid at a concentrate-acid ratio of 1:5). Also this second step is strongly exothermic – releasing ca. 1680 kJ per kilogram of cumene hydroperoxide cleaved. After the cleavage, further cleaning steps are used to achieve in the end a phenol purity of >99.9%. This includes neutralization and removing of sulphuric acid, followed by distillation processes. The overall yield of the production of phenol for this case here is assumed to be in the order of 95%. The inventory is based on stoechiometric calculations. The emissions to air (0.2 wt% of raw material input) and water were estimated using mass balance. Treatment of the wastewater in an internal wastewater treatment plant is assumed (elimination efficiency of 90% for C). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of phenol production, from cumene (RER): This process consists first in the production of cumene from the reaction of benzene and propylene. Cumene then reacts with oxygen to give phenol and acetone. For each kilogram of phenol produced, 0.63 kg of acetone are obtained. For the process 0.6 MJ/kg of electricity and 9.1 MJ/kg of steam are required per kg of phenol and 0.2 MJ/kg of electricity and 9.8 MJ/kg of steam required per kg of acetone (Saygin 2009). Chemical reaction: C9H12 + O2 -> C6H6O + C3H6O This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 SRI consulting. In: Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017 Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://e-archivo.uc3m.es/bitstream/handle/10016/14718/Life%20Cycle%20Assessment%20of%20platform%20chemicals%20from%20fossil%20and%20lignocelulose%20scenarios.%20Martin%20Gallardo.pdf?sequence=2, accessed 6 January 2017 Saygin, D. 2009. Chemical and Petrochemical Sector Potential of best practice technology and other measures for improving energy efficiency. IEA information paper. IEA/OECD. Retrieved from: https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf, accessed 6 January 2017 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (DE): Data in environmental report contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (RU): The data describes an average onshore technology for natural gas with a share of 4% out of combined oil gas production and 96% from mere natural gas production. Natural gas is assumed to 20% sour. It is assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (US): US data (NREL) for emissions completed with german data. Emissions from NREL include combined production (petroleumm and gas) and off-shore production. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of petroleum refinery operation (CH): Average data for the used technology. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of sulfur production, petroleum refinery operation (Europe without Switzerland): The technology level in Europe applied here represents a weighted average of BREF types II (62%), III (29%), IV (9%) refineries; API 35; sulfur content 1.03%. technologyComment of sulfur production, petroleum refinery operation (PE): The technology represents BREF type II refinery; API 25; sulfur content 0.51% technologyComment of sulfur production, petroleum refinery operation (BR): The technology represents BREF type II refinery; API 25; sulfur content 0.57% technologyComment of sulfur production, petroleum refinery operation (ZA): The technology represents a weighted average of BREF types II and III refineries; API 35; sulfur content 0.7% technologyComment of sulfur production, petroleum refinery operation (CO): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 0.56% technologyComment of sulfur production, petroleum refinery operation (IN): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 1.39% technologyComment of sulfur production, petroleum refinery operation (RoW): This dataset represents the prevailing technology level in Europe, this is a weighted average of BREF complexity types II (62%), III (29%), IV (9%) refineries (see BREF document, European Commission, 2015); API 35; sulfur content 1.03%. Reference(s): European Commission (2015) Best Available Techniques (BAT) Reference Document (BREF) for the Refining of Mineral Oil and Gas, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and control, accessible online at http://eippcb.jrc.ec.europa.eu/reference/BREF/REF_BREF_2015.pdf, February 2019 technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of sodium chloride production, powder (RER, RoW): For the production of dry salt, three different types of sodium chloride production methods can be distinguished namely, underground mining of halite deposits, solution mining with mechanical evaporation and solar evaporation. Their respective products are rock salt, evaporated salt and solar salt: - Underground mining: The main characteristic of this technique is the fact that salt is not dissolved during the whole process. Instead underground halite deposits are mined with traditional techniques like undercutting, drilling and blasting or with huge mining machines with cutting heads. In a second step, the salt is crushed and screened to the desired size and then hoisted to the surface. - Solution mining and mechanical evaporation: In this case, water is injected in a salt deposit, usually in about 150 to 500 m depth. The dissolution of the halite or salt deposits forms a cavern filled with brine. This brine is then pumped from the cavern back to the surface and transported to either an evaporation plant for the production of evaporated salt or transported directly to a chemical processing plant, e.g. a chlor-alkali plant. - Solar evaporation: In this case salt is produced with the aid of the sun and wind out of seawater or natural brine in lakes. Within a chain of ponds, water is evaporated by sun until salt crystallizes on the floor of the ponds. Due to their natural process drivers, such plants must be located in areas with only small amounts of rain and high evaporation rates - e.g. in the Mediterranean area where the rate between evaporation and rainfall is 3:1, or in Australia, where even a ratio up to 15:1 can be found. There are some impurities due to the fact that seawater contains not only sodium chloride. That leads to impurities of calcium and magnesium sulfate as well as magnesium chloride. With the aid of clean brine from dissolved fine salt, these impurities are washed out. As a fourth form on the market, the so-called 'salt in brine' may be found, which is especially used for the production of different chemicals. In this case, the solution mining technique without an evaporation step afterwards is used. This dataset represents the production of dry sodium chloride by underground mining (51%) and by solution mining (49%) with modern solution mining technology (thermo compressing technology). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Im Projekt werden drei Themenkomplexe bearbeitet. Der erste Komplex befasst sich mit der Bedeutung der Primärrohstoff- in Relation zur Sekundärrohstoffwirtschaft in Baden-Württemberg. Der zweite Komplex beschäftigt sich mit der Regionalisierung aktueller nationaler und internationaler Ansätze für volkswirtschaftliche Indikatoren zur Messung der Ressourceneffizienz. Im dritten vom INEC bearbeiteten Themenkomplex wird ein umfassender Bewertungsansatz zur Beurteilung des ökologischen und ökonomischen Aufwands bei der Primär- und Sekundärgewinnung von Rohstoffen vorgeschlagen. Im Mittelpunkt steht der Energieaufwand, der mit der Gewinnung oder dem Recycling von Rohstoffen verbunden ist ('Nexus'). Der Ansatz befasst sich z.B. mit dem Energieaufwand bei sinkendem Erzgehalt in der Primärgewinnung oder bei wachsender Dissipation von Wertstoffen beim Recycling. Angestrebt wird ein energetischer Indikator, der sowohl die Primär- und Sekundärgewinnung für verschiedene Rohstoffe wie auch die Substitution von Rohstoffen untereinander umfasst.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Es werden (bis zu 100) Praxisbeispiele aus Unternehmen zum Thema Ressourceneffizienz identifiziert, fachlich begleitet, bewertet und die Ergebnisse analysiert. Es werden Erfolgsfaktoren, Hemmnisse und Potentiale analysiert und Empfehlungen zur Stärkung von Ressourceneffizienz-Maßnahmen gegeben. Die Praxisbeispiele werden ausführlich dokumentiert und ansprechend öffentlich kommuniziert.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Das übergeordnete Ziel des Projektes ist es, einerseits durch geeignete Case Studies der produzierenden Wirtschaft Anregungen zu geben, wie Ressourceneffizienz auf der betrieblichen Ebene gelebt werden kann. Andererseits dienen diese Case Studies in einer wissenschaftlichen Analyse dazu, Erfolgsfaktoren und Hemmnisse aufzuzeigen und den Unternehmen sowie der Politik in Baden-Württemberg Empfehlungen zu geben, wie Ressourceneffizienz noch stärker gefördert werden kann. Das Projekt nutzt die Erkenntnisse des Vorgängerprojekts, entwickelt diese inhaltlich weiter und führt eine fundierte wissenschaftliche Auswertung durch. Dabei soll insbesondere auf aktuelle Fragen eingegangen werden, z.B. die Kopplung des Themas zum Klimaschutz (Paris-Abkommen, G7-Gipfel). Ein wichtiger Fokus liegt auf der Kommunikation der Ergebnisse. Weiterhin sollen die Ergebnisse auch einer internationalen Wissenschafts-Community zugänglich gemacht werden, um auch aus dem Ausland Impulse und Anregungen für das Thema zu bekommen.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Im beantragten Verbundvorhaben sollen im Rahmen einer Konzeptstudie Vorschläge zur Fortschreibung und Weiterentwicklung der Landesstrategie für Ressourceneffizienz Baden-Württemberg erstellt werden. Dazu werden die vom Land priorisierten fünf Themenschwerpunkte 'Digitalisierung und Ressourceneffizienz', 'Ökologische Produktgestaltung und neue Geschäftsmodelle', 'Kreislaufführung von Rohstoffen', 'Ressourceneffizienz in der Baubranche' sowie 'Neue Ansätze zur Gewinnung von heimischen Primärrohstoffen für Industrie' im Rahmen eines jeweiligen Arbeitspakets analysiert. Weiterhin werden Handlungsempfehlungen bzw. Maßnahmen auf Basis des Standes von Wissenschaft und Technik sowie aus Befragungen von Stakeholdern entworfen. Darüber hinaus sollen im Rahmen eines eigenen Arbeitspakets weitere Themenschwerpunkte identifiziert werden, für die ebenfalls Handlungsempfehlungen entwickelt werden. So sollten z. B. der Beitrag von Ressourceneffizienzmaßnahmen zur Senkung von Treibhausgasemissionen dargestellt werden, um bestehende Potenziale zu adressieren und die Landestrategien zu Ressourceneffizienz und Nachhaltiger Bioökonomie sollten miteinander verknüpft werden, um hier Synergieeffekte zu erzielen. Über Literaturrecherchen, Experten-Interviews bzw. Workshops, Gutachten und Fallbeispielanalysen sollen in den sechs Arbeitspaketen fundierte Grundlagen für Politikmaßnahmen gewonnen werden. Das Vorhaben ist als Verbundvorhaben ausgestaltet, bei dem jeder Partner einen Themenschwerpunkt federführend bearbeitet. Die zu entwickelnden Handlungsempfehlungen und Maßnahmenvorschläge sollen nicht nur die Grundlage für die Fortschreibung der Landesstrategie Ressourceneffizienz sein, sondern auch den Erwartungshorizont der Stakeholder darstellen und dienen damit z. B. der Vorbereitung von langfristigen Planungen in Unternehmen.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Aufsetzend auf den Projekten '100 Betriebe für Ressourceneffizienz' und '100Plus Betriebe für Ressourceneffizienz' wird in dem folgenden Projekt der Schwerpunkt sowohl auf der wissenschaftlichen Auswertung und Interpretation der Erfahrungen gelegt als auch auf die Hilfestellung für KMU durch einen wissenschaftlich fundierten Leitfaden. Der Bestand an Fallbeispielen soll insgesamt erweitert werden, ein Netzwerk von Teilnehmern soll aufgebaut bzw. intensiviert werden. Forschungsaspekte sind insbesondere die Frage, welchen Beitrag die betriebliche Ressourceneffizienz zum Klimaschutz leisten kann und wie dies verstärkt und verbessert werden kann. Weiterhin soll die mangelnde Bereitschaft von Unternehmen zu Maßnahmen der Ressourceneffizienz untersucht und Vorschläge zur Senkung der Hürden erarbeitet werden.
Das Projekt "Teil 4" wird vom Umweltbundesamt gefördert und von Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht, Institut für Industrial Ecology - INEC durchgeführt. Die entlang des Lebenszyklus eines Produktes generierten, umfangreichen Daten nutzen zahlreiche Akteure für ihre Entscheidungen. In Wertschöpfungsketten und -netzen sind diese Informationen dezentral verteilt. Während der Nutzungsphase fallen weitere Informationen an, wobei sogar der generierende Konsument in der Regel kein originäres Interesse an deren Weitergabe und Sammlung hat. Sowohl die vorgeschalteten Bereiche der Produktion und Verteilung als auch die nachgeschalteten Bereiche der Sammlung, Wiederverwendung und Kreislaufführung könnten von diesen Informationen erheblich profitieren. Ein transparenter und manipulationssicherer Austausch von Material-, Energie-, Produktions-, Verarbeitungs-, Qualitäts-, Wartungs- und Recyclinginformationen bildet die Basis, um eine ressourceneffiziente Kreislaufwirtschaft effektiv auszugestalten und zu steuern. Physische Stoff- und Güterströme müssen über den gesamten Produktkreislauf verlässlich qualifiziert, quantifiziert, analysiert, bewertet und interpretiert werden können, damit der Produktlebenszyklus bzw. -kreislauf, aus jeder Lebenszyklusphase heraus, effizient hinsichtlich regulatorischer, technischer, ökonomischer, ökologischer und sozialer Aspekte gesteuert werden kann. Da dies bisher in der Praxis nicht oder nur zum Teil der Fall ist, bietet der Ansatz einer Distributed-Ledger-Technologie (DLT)- bzw. Blockchain-Plattform hier die Möglichkeit, die Datenbasis für alle Akteure in den Wertschöpfungs- und Kreislaufwirtschaftsnetzwerken zu verbessern. Der gemeinsame Zugriff auf diese Informationen würde die Effektivität und Effizienz des gesamten Systems erheblich erhöhen. Zusätzliche Anwendungsfelder und Geschäftsmodelle ließen sich generieren. Im Zuge der gesellschaftlichen Erwartungen an den Klimaschutz und eine zukunftsfähige Industriegesellschaft mit hocheffizienten, umweltverträglichen Energie- und Materialströmen (Decarbonisierung und Dematerialisierung der Industrie) ist der umfassende Zugriff auf die verfügbaren Informationen unabdingbar. Dem gegenüber stehen der berechtigte Bedarf der Kontrolle an den eigenen Daten, die Wahrung von Betriebsgeheimnissen und der Schutz von Anonymität. Gleichzeitig ist die Nachverfolgbarkeit, die Datensicherheit und -korrektheit, deren Konsistenz und Fälschungssicherheit in einem Netz von Akteuren gefordert, die sich erstmal grundsätzlich nicht vertrauen. Hierzu soll das Projekt die notwendigen (daten)technischen Ansätze und Voraussetzungen klären, die Gewährleistung der Richtigkeit der Übertragung der Realdaten in das digitale System analysieren, das dazu notwendige DLT-Systemkonzept entwickeln sowie exemplarisch eine Plattform aufbauen und am Beispiel realer Material-, Produkt- und Stoffstromdaten von beteiligten Unternehmen prüfen. (Text gekürzt)