API src

Found 17 results.

Related terms

Transsonisch-CO2 - Transsonischer Prozessverdichter axialer Bauart zur Verdichtung von Kohlendioxid

Das Projekt "Transsonisch-CO2 - Transsonischer Prozessverdichter axialer Bauart zur Verdichtung von Kohlendioxid" wird vom Umweltbundesamt gefördert und von MAN Diesel & Turbo SE durchgeführt. MAN Energy Solutions entwickelt in dem hier vorliegenden Projekt einen Verdichter axialer Bauweise für die Eigenschaften von CO2, also einem molekular schweren Gas. Dieser Verdichter muss hohe Volumenströme verarbeiten, wie sie insbesondere in Kraftwerksanlagen entstehen. Zu den wichtigsten Optionen bei der Vermeidung von Umweltbelastungen durch den weltweit ansteigenden CO2-Ausstoss gehört die CCS-Technologie; diese unterscheidet verschiedene Verfahren zur CO2-Abscheidung wie die Abtrennung nach Kohlevergasung (Pre-Combustion / IGCC) oder die Abscheidung nach dem Verbrennungsprozess (Post Combustion). Eines jedoch eint diese Verfahren: die Notwendigkeit von CO2-Verdichtern für den Transport des Treibhausgases vom Kraftwerk zum Speicherort und zum Verpressen der entstandenen CO2-Massen. Eine intelligente Lösung zur Förderung großer CO2-Volumina liegt in der Vorverdichtung mittels eines geeigneten Axialverdichters und der damit einhergehenden Reduktion des Volumenstroms sowie anschließender Verdichtung auf den Enddruck mittels eines Radialverdichters. Die Vorteile eines Axialverdichters für CO2 sind dabei die sehr hohen Wirkungsgrade, die Möglichkeit der Verdichtung großer Volumenströme in einem einzigen Verdichtergehäuse, die Wärmenutzung aus der Kompression in Kraftwerksprozessen und die mechanische Zuverlässigkeit des Kompressors. Die Kombination von hohen Wirkungsgraden, Zwischenkühlungen und dem Eintrag von Abwärme in den Prozess resultiert in einem geringstmöglichen Energieverbrauch für die Verdichtung. Im Rahmen des Forschungsprojektes werden die Grundlagen der Axialverdichterauslegung für CO2 erarbeitet, auf deren Basis transsonische Prozessverdichter zur Förderung großer CO2-Volumina ausgelegt werden können. Da mit der CO2-Verdichtung mittels eines Axialverdichters Neuland betreten wird, ist sowohl eine Verifikation der numerischen Werkzeuge als auch eine Validierung der angewandten Modelle zwingend erforderlich. Zu diesem Zweck wird ein Versuchsverdichter entwickelt, welcher durch eine umfangreiche Instrumentierung und ein intelligentes Messprogramm alle erforderlichen Messdaten bereitstellt. Die hier weiterentwickelte Technologie zur Verdichtung schwerer Gase mittels eines großen Axialverdichters eignet sich daneben auch für den Einsatz in großskaligen Produktionsanlagen zur Kompression von Kohlenwasserstoffen, Erdgas sowie Stickoxiden oder Wasserstoff. Diese Grundstoffe sind vor dem Hintergrund eines globalen Bevölkerungswachstums ebenso essentieller Bestandteil wirtschaftlichen Wachstums und sozialen Wohlstandes wie eine stabile und ausreichend dimensionierte Energieversorgung. Für die vornehmlichen Standorte dieser Anlagen im asiatischen, afrikanischen und südamerikanischen Raum spielt die Verfügbarkeit der hier entwickelten Technologien also eine nicht unbedeutende Rolle bei der langfristigen Entwicklung von Schwellen- zu Industrienationen.

CO2-Reduktion durch innovatives Vergaserdesign - COORVED (Entwicklung innovativer Großvergaserdesigns für die Erzeugung von Brenn- und Synthesegas aus qualitativ minderwertigen Kohlen für den Einsatz in IGCC-Kraftwerken)

Das Projekt "CO2-Reduktion durch innovatives Vergaserdesign - COORVED (Entwicklung innovativer Großvergaserdesigns für die Erzeugung von Brenn- und Synthesegas aus qualitativ minderwertigen Kohlen für den Einsatz in IGCC-Kraftwerken)" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Energieverfahrenstechnik und Chemieingenieurwesen durchgeführt. Das Gesamtziel des Vorhabens besteht darin, den international anstehenden Entwicklungsschritt für zukünftige IGCC-Kraftwerke vorzubereiten. Dieser liegt bei einer neuen Generation der Kohlevergasung, die sich durch große Leistungseinheiten, hohe Robustheit und höchste Effizienz auszeichnen und auch für minderwertige Kohlen geeignet sind. Die Basis für Vergasungsverfahren dieser dritten Generation soll im Rahmen des Projektes geschaffen werden. Ein wesentliches Ziel ist die Weiterentwicklung und Verifizierung von Modellierungswerkzeugen für Vergasungsprozesse unter besonderer Berücksichtigung der exponierten Teilbereiche Partialoxidationsflamme und reaktive partikelbeladene Strömung. Auf dieser Grundlage sollen neue Ansätze zur Gestaltung von Vergasungsreaktoren insbesondere für 'schwierige' Einsatzstoffe entwickelt werden. Daraus ergibt sich folgendes Arbeitsprogramm: 1. Entwicklung eines Teststandes zur optischen Untersuchung von Partialoxidationsflammen und Bereitstellung einer Referenzflamme (FG-Flamme), 2. Verifizierung/Weiterentwicklung von CFD-Modellierungswerkzeugen für Vergaserflammen, 3. Entwicklung eines Teststandes zur Untersuchung von reaktiven partikelbeladenen Strömungen, 4. Verifizierung/Weiterentwicklung entsprechender Modellierungswerkzeuge (CFD + reaktive Stoffphasensysteme), 5. Kombination der Modelle für Flamme und Strömung zur realitätsnahen Vergasermodellierung, 6. Virtuelle Entwicklung eines optimierten Vergaserdesigns für 'schwierige' Einsatzstoffe.

II - Grundlegende Untersuchungen zur Entwicklung zukünftiger Hochtemperaturvergasungs- und Gasaufbereitungsprozesse für dynamische Stromerzeugungs- und Speichertechnologien

Das Projekt "II - Grundlegende Untersuchungen zur Entwicklung zukünftiger Hochtemperaturvergasungs- und Gasaufbereitungsprozesse für dynamische Stromerzeugungs- und Speichertechnologien" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Das IGCC Kraftwerk ist eine geeignete Kraftwerkstechnologie um auf Basis des Energieträgers Kohle die veränderliche Einspeisung Erneuerbarer Energien in der zukünftigen Energieversorgung auszugleichen. In grundlagenorientierten Forschungsvorhaben HotVeGas werden Konzepte für zukünftige Kraftwerks- und Speichertechnologien evaluiert und neue Kraftwerkskomponenten entwickelt. In Forschungsvergaseranlagen sollen die Reaktionsabläufe unter industriell relevanten Bedingungen experimentell untersucht werden, um bestehende Vergasungstechnologien zu optimieren, zukünftige Technologien zu entwickeln und geeignete Brennstoffe zu charakterisieren. Die Experimente zielen dabei auf die Vergasungskinetik und das Ascheverhalten bei hohen Temperaturen und Drücken ab. Weiterhin werden in statischen und dynamischen Simulationen neue Kraftwerksschaltungen, Zwischenspeichertechnologien und Lastfähigkeitskonzepte entwickelt und bewertet, wobei auch der Einsatz neuer Komponenten wie z.B. einem Membran-Shift-Reaktor betrachtet wird. Für die Validierung von eigens entwickelten CFD Modellen von Vergasungsanlagen werden die experimentell gewonnenen Daten herangezogen, um weiterführende Ansätze für neue Kraftwerkskomponenten zu finden.

Teilprojekt: Risikominimierung korrosionsbedingter Schäden bei CO2-Abscheidung, Transport und Speicherung

Das Projekt "Teilprojekt: Risikominimierung korrosionsbedingter Schäden bei CO2-Abscheidung, Transport und Speicherung" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung 5 Werkstofftechnik, Fachgruppe 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe durchgeführt. Im Rahmen des Verbundprojektes COORAL sollen die Verunreinigungen, die sich beim Oxyfuel- und Oxycoal-Prozess, beim IGCC mit CO2-Abtrennung und beim DKW-Prozess mit chemischer Absorption ergeben können, in Abhängigkeit von der Betriebsweise und anderer Randbedingungen betrachtet und deren Auswirkungen auf Transport, Injektion und Lagerung bewertet werden, um so eine energetisch und ökonomische Optimierung der CO2-Abscheidung und Reinigung zu ermöglichen. In COORETEC werden Kraftwerksprozesse entwickelt, die die Trennung des CO2 von den Rauchgasen bzw. im Fall des IGCC von den Prozessgasen ermöglichen. Dieses mit Verunreinigungen aus dem Verbrennungsprozess vermischte CO2 und der vorhandene Wasserdampf erhöhten die Korrosivität des Gases. Ziel dieses Vorhabens im Verbundprojekt COORAL ist die Klärung der Frage, wie mit höchster Sicherheit und Zuverlässigkeit bei geringsten Investitionskosten CO2 von den Quellen zu den Senken transportiert werden kann. Zum Arbeitsplan gehört die Werkstoffauswahl und Zusammensetzung der Gasgemische (Stähle), der Ausbau der vorhandenen Laboranlagen, die Durchführung von bis 4000 Std. (0,5 Jahre) Korrosionsversuche unter Druck und Gasströmung, Lebensdauerabschätzungen aus den Korrosionsuntersuchungen sowie eine Werkstoffbewertung. Die gewonnenen Ergebnisse dienen zur Auswahl optimaler Werkstoffe unter den gegebenen Bedingungen und somit dem sicheren Betrieb von Kraftwerken zur allgemeinen Energieversorgung.

Teilprojekt: Geochemische Reaktionen von CO2-Gasgemischen mit Speichergesteinen und Deckschichten

Das Projekt "Teilprojekt: Geochemische Reaktionen von CO2-Gasgemischen mit Speichergesteinen und Deckschichten" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Geowissenschaften und Rohstoffe durchgeführt. Im Rahmen des Verbundprojektes COORAL sollen die Verunreinigungen, die sich beim Oxyfuel- und Oxycoal-Prozess, beim IGCC mit CO2-Abtrennung und beim DKW-Prozess mit chemischer Absorption ergeben können, in Abhängigkeit von der Betriebsweise und anderer Randbedingungen betrachtet und deren Auswirkungen auf Transport, Injektion und Lagerung bewertet werden, um so eine energetisch und ökonomische Optimierung der CO2-Abscheidung und Reinigung zu ermöglichen. Ziel des Vorhabens ist die Untersuchung der Einflüsse von Verunreinigungen auf geochemische Reaktionen mit Speichergesteinen und Deckschichten. Sie dient der Prognose von Änderungen der hydraulischen und mineralogischen Gesteinseigenschaften im Speicher. Numerische Simulationsrechnungen sollen zur Steuerung und Ergänzung der Experimente vorgenommen werden. Der Vergleich von Experimenten und Simulationsrechnungen dient insbesondere der verlässlicheren Vorhersage langsamer geochemischer Reaktionen. Es werden verschiedene, hochauflösende Langzeit-Laborexperimente an statischen- und an Durchflussreaktoren ausgeführt. Zur Steuerung und Ergänzung der Laborexperimente werden begleitende Simulationsrechnungen durchgeführt. Die Ergebnisse des Vorhabens werden nicht direkt wirtschaftlich vermarktbar sein. Sie sollen aber eine Optimierung der Abgasqualität für die gesamte Prozesskette liefern und so zu einer erheblichen Kosteneinsparung bei der Auslegung der technischen Anlagen führen. Im Rahmen dieses Projektes werden Methoden entwickelt, die mittelfristig routinemäßig zum Einsatz kommen könnten.

Teilprojekt: System- und Phasenverhalten CO2-reicher Ströme aus Kraftwerken unter Einfluss von Feuchte

Das Projekt "Teilprojekt: System- und Phasenverhalten CO2-reicher Ströme aus Kraftwerken unter Einfluss von Feuchte" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Thermische Verfahrenstechnik V-8 durchgeführt. Im Rahmen des Verbundprojektes COORAL sollen die Verunreinigungen, die sich beim Oxyfuel- und Oxycoal-Prozess, beim IGCC mit CO2-Abtrennung und beim DKW-Prozess mit chemischer Absorption ergeben können, in Abhängigkeit von der Betriebsweise und anderer Randbedingungen betrachtet und deren Auswirkungen auf Transport, Injektion und Lagerung bewertet werden, um so eine energetisch und ökonomische Optimierung der CO2-Abscheidung und Reinigung zu ermöglichen. In diesem Teilprojekt sollen offene Fragestellungen zu den thermophysikalischen Systemdaten und den Zustandsgrößen der verschiedenen Stoffgemische untersucht werden. Die Zusammensetzung der Gasgemische wird durch die Projektpartner vorgegeben. Mittels Quarz- und Kapillarviskosimeter werden Fluidviskositäten unter Druck bestimmt. Zur Bestimmung der Gemischdichte unter realen Bedingungen soll eine Hochdruckmagnetschwebewaage, erweitert mit einer Dichtemesszelle, zur Anwendung kommen. Zur Untersuchung des Taupunktes und der Hydratbildung werden Versuche mit einem Feuchtesensor unter Förder- und Lagerbedingungen in Hochdrucksichtzellen durchgeführt. In Zusammenhang mit der erweiterten Anlage zur Festbettdurchströmung werden Grenzphasenverhalten der Mischung und Porenwasser untersucht. Grenzwerte für Begleitkomponenten im CO2 sollen erarbeitet werden. Zusammen mit den Systemdatenwerden prinzipielle Aussagen zur Umsetzung der geplanten großindustriellen CO2-Sequestrierung möglich.

Teilprojekt: Reinheitsanforderungen an CO2-Gemische nach der Abscheidung am Kraftwerk auf Basis thermodynamischer und technischer Untersuchungen

Das Projekt "Teilprojekt: Reinheitsanforderungen an CO2-Gemische nach der Abscheidung am Kraftwerk auf Basis thermodynamischer und technischer Untersuchungen" wird vom Umweltbundesamt gefördert und von DBI Gas- und Umwelttechnik GmbH durchgeführt. Im Rahmen des Verbundprojektes COORAL sollen die Verunreinigungen, die sich beim Oxyfuel- und Oxycoal-Prozess, beim IGCC mit CO2-Abtrennung und beim DKW-Prozess mit chemischer Absorption ergeben können, in Abhängigkeit von der Betriebsweise und anderer Randbedingungen betrachtet und deren Auswirkungen auf Transport, Injektion und Lagerung bewertet werden, um so eine energetisch und ökonomische Optimierung der CO2-Abscheidung und Reinigung zu ermöglichen. Ziel des Projektes ist die Abschätzung zulässiger Konzentrationen von Begleitstoffen im CO2 nach dem Aufbereitungsprozess im Kraftwerk durch Bewertung der Auswirkungen auf Transport, Injektion und unterirdische Speicherung. In den 3 Teilgebieten Transport, Injektion und Lagerung werden material- und sicherheitstechnische Anforderungen an die CO2 -Qualität ermittelt (Thermodynamische Untersuchungen, Korrosion) und die Erkenntnisse in Korrelation mit den technischen und wirtschaftlichen Möglichkeiten bei Erzeugung und Abtrennung gebracht. Die Ergebnisse fließen in die Durchführung einer sicheren und wirtschaftlicheren unterirdischen Speicherung von CO2 ein. Das Interesse von Seitens der Kraftwerks- und Speicherbetreiber ist gegeben, sie sind in das Projekt eingebunden.

Teilprojekt: Experimentelle geomechanische und geochemische Kombinationsuntersuchungen

Das Projekt "Teilprojekt: Experimentelle geomechanische und geochemische Kombinationsuntersuchungen" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Institut für Geowissenschaften und Geographie, Fachgebiet Ingenieurgeologie durchgeführt. Bei der geplanten untertägigen Speicherung von CO2 aus den Verbrennungsprozessen in Kraftwerksanlagen wird allgemein mit chemisch-physikalischen Wechselwirkungen zwischen dem unreinen, weil mit Reststoffen aus dem Verbrennungsprozess wie z.B. Stickoxiden oder Schwefelverbindungen belasteten CO2 gerechnet. Dabei ist jedoch weitgehend unbekannt, welche Veränderungen des mineralogischen Phasenbestandes, der chemischen Zusammensetzung und des geomechanischen Verhaltens in den verschiedenen, möglichen Speichergesteinen mit der Einspeicherung verbunden sein werden. Im Rahmen eines laborativen Untersuchungsprogrammes sollen im Verbund mit den Projektpartnern der BGR, Hannover, an begründet auszuwählenden Speichergesteinen die chemischen, mineralogischen und geomechanischen Veränderungen unter den zu erwartenden Druck- und z.T. auch Temperaturbedingungen experimentell simuliert und beobachtet werden. Aus den experimentellen Befunden soll eine quantifizierende Abschätzung über die in-situ zu erwartenden mineralogisch-geochemischen und geomechanischen Prozesse und möglichen Veränderungen in den Speicherformationen abgeleitet werden.

Improvement of Integrated Gasification Combined Cycle Power Plants Starting from the State-of-the-Art (Puertollano)

Das Projekt "Improvement of Integrated Gasification Combined Cycle Power Plants Starting from the State-of-the-Art (Puertollano)" wird vom Umweltbundesamt gefördert und von Universität-Gesamthochschule Essen, Fachbereich 12 Maschinenwesen, Lehrstuhl für Technik der Energieversorgung und Energieanlagen durchgeführt. OBJECTIVES: Power plants based on the integrated combined cycle (IGCC) already in operation (Buggenum, 250 MW) or under construction (Puertollano, 300 MW) are generally characterized as demonstration facilities. The same applies to the development status of such plants in the US. The most attractive features of IGCC power plants are the extremely low environmental pollution and their capability to utilize various fuels such as coal, oil refinery residues, biomass, waste, etc., if the gasifiers are adequately adapted. Moreover, it is to be expected that such plants will attain higher efficiencies than conventional coal-fired power plants, thereby also reducing CO2 emissions effectively. Despite these advantages, further efforts are still necessary to achieve competitiveness with respect to the conventional steam power plant. There are three factors determining electricity generating costs, which can be influenced by design, process engineering and manufacture, namely the investment, fuel consumption and availability. Even if first-of-its-kind costs are neglected, it is to be expected that the specific investment of IGCC power plants based on the present design still turns out to be slightly above those of the conventional ones. As both the conventional steam power plant employing supercritical live steam and the IGCC of current design (Puertollano type) attain net efficiencies of 45 Prozent, an IGCC successor plant must show better performance to be competitive. As a consequence, investigations aiming at design improvements have to be carried out in order to accelerate market penetration and to benefit in this way from the environmental advantages of an IGCC in the near future. For this reason this Joule project 'Advanced Cycle Technologies' was set up by five partners from several countries of the European Union with the objective to study measures of cost reduction and efficiency enhancement and to jointly provide a basis for an advanced design. The studies also include co-gasification of coal and biomass in an entrained-flow gasifier suitable for IGCCs. The investigations comprise experiments on laboratory scale as well as computations, theoretical elaborations and design studies. Since two of the project partners are manufacturer and supplier companies of main components of the European IGCC demonstration power plants, the design studies also include the assessment of potential improvements with respect to feasibility and availability. The project work is subdivided into four task areas. Since most of the measures for efficiency enhancement influence costs and availability, the task areas are strongly interrelated. As any change in design and performance parameters influences the performance of other subsystems, repeated thermodynamic and economy analyses are performed. Therefore, close cooperation of the project partners is imperative.

Entfernung von Schwefelwasserstoff und Ammoniak aus dem Kombi-Kraftwerks-System

Das Projekt "Entfernung von Schwefelwasserstoff und Ammoniak aus dem Kombi-Kraftwerks-System" wird vom Umweltbundesamt gefördert und von Rheinbraun durchgeführt. Moderne Kombi-Kraftwerksprozesse mit integrierter Kohlevergasung z.B. Hochtemperatur-Winkler-Vergaser, HTW, koennen in der Verstromungstechnologie einen wichtigen Beitrag zum Umwelt- und Klimaschutz leisten. In einem solchen Anlagenkonzept sind daher Verbesserungspotentiale der verschiedensten Kraftwerkskomponenten zu betrachten. Ein wesentlicher Faktor ist die Gasreinigung von Brenngasen aus der Kohlevergasung. Im Rahmen von Technikumsversuchen, wurden unter Zugabe verschiedener Sorbentien Basisdaten fuer die trockene Entschwefelung von HTW-Rohgas in einem Temperaturbereich von 200 - 500 Grad C ermittelt. Unter Zugrundelegung der im Technikumsmassstab erzielten Entschwefelungsgrade, wurden/werden im Rahmen dieses Projektes weitere Entwicklungsschritte mit realem Kohlegas im Pilotmassstab durchgefuehrt. Eine abschliessende Bewertung der Versuchsergebnisse erfolgt zum Projektende.

1 2