API src

Found 653 results.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Forschergruppe (FOR) 2131: Datenassimilation in terrestrischen Systemen; Data Assimilation for Improved Characterisation of Fluxes across Compartmental Interfaces, Teilprojekt: Identifizierbarkeit von Boden- und Ökosystemzustandsgrößen und -parametern in integrierten Grundwasser-Landoberfläche-Atmosphäre-Modellen durch multivariate Datenassimilation

Wir werden eine Strategie zur Assimilation der Landoberflächentemperatur implementieren, bei der verschiedene Beobachtungen innerhalb eines Tages verwendet werden, um sensitive Landoberflächenparameter und -zustandsgrößen anzupassen. Wir werden zudem einen Operator zur Assimilation des Blattflächenindex entwickeln, um damit dynamische Vegetationszustandsgrößen und sensitive Ökosystemparameter anzupassen. Der Nutzen der genannten Daten in Kombination mit Bodenfeuchtebeobachtungen wird mit Hilfe synthetischer Experimente ermittelt. Im Besonderen wird dabei untersucht, ob die Parameterschätzung verbessert werden kann und in welchem Ausmaß die Assimilation bestimmter Datentypen die Zustandsgrößen anderer Kompartimente verbessert. Hierbei werden realistische Szenarien verwendet, welche verschiedene Unsicherheitsquellen und unbekannte Parameter beinhalten. Synthetische Experimenten werden zunächst mit der Landkomponente von TerrSysMP-PDAF (CLM-ParFlow-PDAF) mit Hilfe eines gemeinsamen Testfalles mit P5, P6 und P7 durchgeführt. Wir werden zudem Beiträge zu den Experimenten mit dem gesamten TerrSysMP-PDAF liefern, welche von C1 koordiniert werden. Im letzten Schritt werden Tests mit dem Rureinzugsgebiet durchgeführt.

Methane Emissions from Impounded Rivers: A process-based study at the River Saar

Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.

Hydraulisch und ökologisch definierte Auengrenzen als Basis für die Entwicklung eines integrierten Ansatzes zur Quantifizierung von Ökosystemleistungen in Auen auf Landschaftsebene

Ziel des vorgeschlagenen Projektes ist die Entwicklung eines integrierten mesoskaligen Ansatzes zur Quantifizierung von neun Ökosystemleistungen (ÖSL) in Auen. Unter Berücksichtigung von Hydraulik und Ökologie werden Wirkungsgrenzen definiert. Diese ermöglichen eine Abgrenzung der Aue nach ihrer Funktionsfähigkeit in Bezug auf die Bereitstellung von ÖSL, welche für den Erhalt natürlicher Lebensgrundlagen bedeutend sind. Trotz des Wissens um die ökologische Bedeutung und die hohe Gefährdung von Auen weltweit findet eine Verschlechterung des Auenzustands weiterhin statt. Dies reduziert auch die Bereitstellung von ÖSL von Auen in unbekanntem Maß. Grund hierfür ist ein fehlendes Verständnis der Interaktionen zwischen den natürlichen Prozessen und ÖSL, den anthropogenen Einflüssen sowie dem Auenzustand. Des Weiteren werden in Auen bereitgestellte ÖSL bei der Kostenberechnung von Maßnahmen vernachlässigt, da ein integrierter übertragbarer Ansatz zur Ermittlung der ÖSL auf der relevanten räumlichen Skala, der Landschaftsebene, fehlt. Die Herausforderungen in der Ökosystemleistungsforschung liegen hauptsächlich in der Vielfalt von nicht abgestimmten Definitionen, Begrifflichkeiten und Indikatoren. Die Skalenproblematik wird zudem bei der Betrachtung der Auengrenzen als räumliche Basis deutlich. Mit der Entwicklung einer übertragbaren Methode wird in diesem Projekt erstmalig ein umfangreiches Spektrum an ÖSL (klimatische, hydrologische Leistungen, Wasserqualität und Biodiversität, Produktion von Lebensmitteln, Baumaterialien und Energie, kulturelle Leistungen, Schutz vor Naturgefahren) unter Berücksichtigung des Auenzustands in Deutschland integriert. Als räumliche Basis der Auenabgrenzung dienen die Überschwemmungsflächen häufiger Hochwasser gemäß öffentlich zugänglicher Hochwassergefahrenkarten. Die Eignung dieser rein hydraulisch bestimmten Grenzen wird durch umfangreiche ökologische Daten anderer Forschungsinstitute (Bundesanstalt für Gewässerkunde (Vegetation) und Universität Duisburg-Essen (Laufkäfer)) erstmals untersucht. Neue Indikatoren werden für jede der neun ÖSL auf der Basis von Geoinformationen und Literaturrecherchen entwickelt. Mittels Metaanalysen wird die Übertragbarkeit von ökonomischen Faustzahlen für einen Wertetransfer überprüft. Ergebnis ist eine erstmalige Berechnung des ökonomischen Gesamtwertes der Auen auf Landschaftsebene, um die Leistungen von Auen, ihren Erhalt bzw. ihre Wiederherstellung umfassender als bisher zu bewerten. Anhand von zehn bereits durchgeführten Auenrenaturierungsprojekten wird dieser Ansatz mittels einer Kosten-Nutzen-Rechnung validiert. Dieser neue integrierte Ansatz ist interdisziplinär ausgerichtet, um der Komplexität von Auen und den von ihnen erbrachten ÖSL gerecht zu werden. Mit der Inwertsetzung bieten sich breite thematische Anknüpfungspunkte. So erhalten u.a. Biologen und Hydrologen, Geowissen- und Volkswirtschaftler eine vereinheitlichte Datenbasis bisher dezentral vorliegender Informationen.

Natürliche Nanopartikel und Kolloide in bewaldeten Europäischen Quellgebieten: Neue Erkenntnisse über raumzeitliche Dynamiken und potentielle Herkunft

Natürliche Nanopartikel (NNP) und bodenstämmige Kolloide werden zunehmend als hoch relevante Transportform von Elementen in wässrigen Phasen von Ökosystemen anerkannt. Zur elementaren Zusammensetzung dieser Partikel und deren Größenspanne liegen erste Erkenntnisse vor, jedoch fehlen weiterhin wichtige fundamentale Informationen über deren zeitliche Dynamiken und deren Herkunft. Die Ziele dieses Projektes sind (i) die zeitlichen Dynamiken von NNP und Kolloiden aufzudecken, (ii) den Einfluss von signifikant erhöhten Abflussereignissen auf den Export von NNP und Kolloid-bedingtem Transport aufzuklären und (iii) die potentielle Herkunft von Bachwasser-NNP und Kolloiden zu erklären. Um eine Vorstellung über die Validität der Ergebnisse (iv) auf europäischer Skala und durch verschiedene Ökosysteme zu bekommen, werden die Analysen an Bachwasserproben von verschiedenen Dauerbeobachtungsflächen durch Europa durchgeführt. Diese Standorte, mit denen ich bereits erste eigene wissenschaftliche Kooperationen etablieren konnte, bieten Daten über die Böden, die Gewässerchemie und Stoffflüsse innerhalb des Ökosystems. Die Analytik wird mit Hilfe von Kombinationsverfahren der Feld Fluss Fraktionierung (FFF) durchgeführt. Für ausgewählte Proben wird größen- und elementspezifische Analytik von NNP und Kolloiden mit der Analyse von Lignin Phenolen, der natürlichen Häufigkeitsermittlung von 13C, Radiokarbondatierung und zusätzlicher d56Fe Analytik kombiniert. Durch die Kombination der Daten sollte es möglich sein das Vorkommen und die Variabilität von NNP und Kolloiden als vorherrschende Elementtransportform, sowie deren Herkunft aus verschiedenen Bodenhorizonten und die generelle Validität meiner Ergebnisse auf unterschiedliche Standorte in Europa besser verstehen zu können.

Nutzung von multi-dimensionalen Bilddaten der optischen Kohärenztomographie zur Entwicklung eines multiphysikalischen Biofilmmodells

Im beantragten Projekt soll die Wechselwirkung von Strömungs- und Substratbedingungen auf die Struktur und Funktion von Biofilmen untersucht werden. Entscheidend ist hier die Kombination von experimenteller und modelltechnischer Kompetenz, die es erlauben soll, das Biofilmwachstum, die Struktur, die Wechselwirkung mit dem Fluid und den Abtrag von Biomasse für einen großen Bereich von verschiedenen Bedingungen zu modellieren. Auf der experimentellen Seite soll vor allem die optische Kohärenztomographie (OCT) genutzt werden, um auf der Biofilm-Mesoskala Informationen zur Fluidstruktur-Wechselwirkung zu generieren. Sauerstoffoptoden sollen eingesetzt werden, um zweidimensional aufgelöste Informationen zur Biofilmaktivität zu ermitteln. Die experimentellen Daten werden dann genutzt, um ein Kontinuum-Biofilmmodel zu erstellen und zu kalibrieren. Im Vergleich zu den bisher verwendeten Biofilmmodellen wird im zu entwickelnden Modell die Interaktion der Biofilmstruktur mit dem umgebenden Fluid integriert. Dafür müssen die mechanischen Eigenschaften des Biofilms bekannt sein. Sie sollen mit der OCT ermittelt werden, die es erlaubt, zwei- und dreidimensionale Bilddaten der Biofilme bei sich ändernden Strömungsbedingungen zu ermitteln. Die Daten werden dann in das Biofilmmodel übertragen, dafür sollen entsprechende Protokolle entwickelt werden. Zunächst wird der Biofilm als homogene Struktur betrachtet, in weiteren Schritten werden die mechanischen Biofilmeigenschaften dann auch als heterogen angenommen. Neben dem Wachstum wird auch der Abtrag von Biomasse (also kohäsive und adhäsive Eigenschaften) in das Modell eingehen, auch dafür sollen mit Hilfe der OCT entsprechenden Experimente zur Verifikation durchgeführt werden. Die Vorhersagefähigkeit des entwickelten Biofilmmodelles soll zum Ende des Vorhabens anhand eines realen Abwasserbiofilms getestet werden. Ziel ist es, dass mit Hilfe des entwickelten Modells das Verhalten von Biofilmen für eine große Breite von Strömungs- und Substratbedingungen vorhersagbar wird.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Reaktivität und Transformation funktioneller Gruppen von Spurenstoffen und organischer Hintergrundmatrix bei der Ozonierung von Abwasser

Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.

Pestizideffekte an den Rändern? Auswirkungen von agrochemischer Verschmutzung flussabwärts auf Organismen in Refugien

Basierend auf mehreren Studien in den letzten zwei Jahrzehnten ist weitestgehend gesichert, dass Pestizide Wirbellosen-Gemeinschaften in Bächen beeinflussen, was sich in einer Zunahme der relativen Häufigkeit von toleranten Taxa äußert. Unser Verständnis der Reaktion und der Langzeitfolgen toxischer Effekte ist jedoch noch unzureichend in Bezug auf die räumliche Dynamik und Anpassungsprozesse. Modellierungsstudien zeigten, dass sich genetische Anpassungen an Pestizide, die zu einer erhöhten Toleranz führen, auch Organismen in unbelasteten Standorten beeinflussen können. Empirische Studien über das Potenzial von Pestizideffekten flussabwärts sich auf Organismen in unbelasteten Bachabschnitten fortzupflanzen sind jedoch selten. In diesem Projekt untersuchen wir für verschiedene Wirbellose, ob sich Pestizideffekte auf Organismen in Refugien ausbreiten können. Das Projekt profitiert von einem landesweiten Monitoringprogramm zu Pestiziden (Umsetzung des nationalen Monitorings kleiner Gewässer für Pestizide), das qualitativ hochwertige Pestiziddaten, hochauflösende physikochemische Daten sowie Gemeinschaftsdaten zu Wirbellosen und Kieselalgen ohne zusätzliche Kosten liefert. Wir werden drei wirbellose Arten, darunter einen Gammarid, eine Köcherfliege und eine Eintagsfliege, in landwirtschaftlichen Stellen mit hoher Pestizidtoxizität und in zwei Abständen innerhalb von Refugien (Rand von Refugien und weiter stromaufwärts) untersuchen. Mit Hilfe von Schnelltests werden wir die Toleranz der Wirbellosen bestimmen, um mögliche Anpassungen beurteilen zu können. Darüber hinaus werden wir die genetische Vielfalt und Energiereserven in Gammariden messen. Wir stellen die Hypothese auf, dass die Anpassung die genetische Vielfalt reduziert und dass diese Reduktion sich auf unbelastete Standorte am Rand des Refugiums ausbreitet. Darüber hinaus gehen wir nach dem Konzept der Ressourcenallokation davon aus, dass eine höhere Toleranz mit einer höheren Allokation von Energie in Abwehrmechanismen verbunden ist, was zu geringeren Energiereserven im Vergleich zu weniger toleranten Organismen führt. Insgesamt wird dieses Forschungsprojekt wesentlich zum Verständnis der Mechanismen beitragen, die der höheren Toleranz in belasteten Standorten, wie in einer früheren Studie beobachtet (Shahid et al. 2018), zugrunde liegen. Außerdem wird es unsere Abschätzung der Kosten der Verschmutzung für Organismen und Populationen in unbelasteten Standorten voranbringen.

Rolle der molekularen Zusammensetzung gelöster organischer Substanz (DOM) zur Identifizierung von Quellen und Freisetzung von DOM und Spurenelementen in Liefergebieten von Trinkwasserseen in Gebirgsregionen der mittleren Breiten (DOMtrace) Ein Festphasen Pyrolyse (Py-GC-MS, THM-GC-MS) Ansatz

Der Anstieg der Konzentrationen von gelöstem organischem Kohlenstoff (DOM) konnte in vielen Oberflächengewässern der temperierten Zonen der Nordhemisphäre nachgewiesen werden. Der Anstieg der DOM-Konzentrationen wird größtenteils auf die schnellere Zersetzung organischer Substanz und den erhöhten Austrag von DOM aus den Böden der Gewässereinzugsgebiete, hier speziell aus Torfmooren, in Flüsse und Seen zurückgeführt. Neben der Bedeutung des DOM im globalen Kohlenstoffkreislauf, auch im Zusammenhang mit Klimaveränderungen, verursacht die 'Gewässerverbraunung' Probleme im Zusammenhang mit der Trinkwassergewinnung. So vermindern hohe DOM-Gehalte, oft auch verbunden mit erhöhten Einträgen DOM-gebundener Schwermetalle, die Trinkwasserqualität und Erhöhen die Kosten der DOM-Entfernung. Obwohl die DOM-Zusammensetzung ein Schlüsselparameter für das Umweltverhalten von DOM ist, ist die Bedeutung seiner molekularen Zusammensetzung in Verbindung mit Landnutzung, Liefergebietsvegetation, Moorhydrologie und Schwermetalltransport kaum verstanden. Zusätzlich sind viele Waldgebiete und Moore in Mittelgebirgen aufgrund von jahrhundertelangem Bergbau oft mit Schwermetallen (Pb, Hg, Zn, etc.) und Arsen belastet. Im vorgeschlagenen Projekt soll das Phänomen des DOM-Anstiegs in Trinkwasserreservoiren am Beispiel der Eckertalsperre und seinem Liefergebiet im Harz untersucht werden. Der Anstieg der DOM-Konzentrationen wird dort bereits seit mehr als 10 Jahren beobachtet. Obwohl allgemein davon ausgegangen wird, dass eine erhöhte Torfzersetzung in Mooren die erhöhten DOM- und Schwermetallausträge verursacht, konnte dieses bisher nicht direkt nachgewiesen werden. Im Rahmen des vorgeschlagenen Projektes soll die molekulare Zusammensetzung von DOM im Eckertalstausee und seiner Zuflüsse, die sowohl schwermetallkontaminierte Moorgebiete als auch Waldböden entwässern, über einen Zeitraum von 12 Monaten regelmäßig zu untersuchen. Ziel ist es, die saisonale und räumlich Variabilität der Austräge und Quellen von DOM und seine Rolle als Transportmedium für Spurenstoffe als Funktion der molekularen DOM-Zusammensetzung zu verstehen. Anders als in früheren Studien wird der Schwerpunkt der Bestimmung der molekularen DOM-Zusammensetzung auf Festphasenanalysen mittel Pyrolyse-GC-MS und Thermally assisted Hydrolysis and Methylation -GC-MS unterstützt von spektroskopischen Methoden und Spurenelementanalysen liegen. Das beantragte Projekt soll somit, durch die Nutzung des Eckertalstausee-Systems als natürliches Labor, durch die Identifizierung der wichtigsten DOM-Quellen und deren chemischer Variabilität eine Lücke im Verständnis des biogeochemischen Verhaltens von DOM in der Umwelt schließen.

1 2 3 4 564 65 66